Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel Barrot is active.

Publication


Featured researches published by Michel Barrot.


Neuron | 2002

Neurobiology of depression.

Eric J. Nestler; Michel Barrot; Ralph J. DiLeone; Amelia J. Eisch; Stephen J. Gold; Lisa M. Monteggia

Current treatments for depression are inadequate for many individuals, and progress in understanding the neurobiology of depression is slow. Several promising hypotheses of depression and antidepressant action have been formulated recently. These hypotheses are based largely on dysregulation of the hypothalamic-pituitary-adrenal axis and hippocampus and implicate corticotropin-releasing factor, glucocorticoids, brain-derived neurotrophic factor, and CREB. Recent work has looked beyond hippocampus to other brain areas that are also likely involved. For example, nucleus accumbens, amygdala, and certain hypothalamic nuclei are critical in regulating motivation, eating, sleeping, energy level, circadian rhythm, and responses to rewarding and aversive stimuli, which are all abnormal in depressed patients. A neurobiologic understanding of depression also requires identification of the genes that make individuals vulnerable or resistant to the syndrome. These advances will fundamentally improve the treatment and prevention of depression.


Proceedings of the National Academy of Sciences of the United States of America | 2001

ΔFosB: A sustained molecular switch for addiction

Eric J. Nestler; Michel Barrot; David W. Self

The longevity of some of the behavioral abnormalities that characterize drug addiction has suggested that regulation of neural gene expression may be involved in the process by which drugs of abuse cause a state of addiction. Increasing evidence suggests that the transcription factor ΔFosB represents one mechanism by which drugs of abuse produce relatively stable changes in the brain that contribute to the addiction phenotype. ΔFosB, a member of the Fos family of transcription factors, accumulates within a subset of neurons of the nucleus accumbens and dorsal striatum (brain regions important for addiction) after repeated administration of many kinds of drugs of abuse. Similar accumulation of ΔFosB occurs after compulsive running, which suggests that ΔFosB may accumulate in response to many types of compulsive behaviors. Importantly, ΔFosB persists in neurons for relatively long periods of time because of its extraordinary stability. Therefore, ΔFosB represents a molecular mechanism that could initiate and then sustain changes in gene expression that persist long after drug exposure ceases. Studies in inducible transgenic mice that overexpress either ΔFosB or a dominant negative inhibitor of the protein provide direct evidence that ΔFosB causes increased sensitivity to the behavioral effects of drugs of abuse and, possibly, increased drug seeking behavior. This work supports the view that ΔFosB functions as a type of sustained “molecular switch” that gradually converts acute drug responses into relatively stable adaptations that contribute to the long-term neural and behavioral plasticity that underlies addiction.


Proceedings of the National Academy of Sciences of the United States of America | 2002

CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli

Michel Barrot; Jocelien Olivier; Linda I. Perrotti; Ralph J. DiLeone; Olivier Berton; Amelia J. Eisch; Soren Impey; Daniel R. Storm; Rachael L. Neve; Jerry C. P. Yin; Venetia Zachariou; Eric J. Nestler

The transcription factor cAMP response element (CRE)-binding protein (CREB) has been shown to regulate neural plasticity. Drugs of abuse activate CREB in the nucleus accumbens, an important part of the brains reward pathways, and local manipulations of CREB activity have been shown to affect cocaine reward, suggesting an active role of CREB in adaptive processes that follow exposure to drugs of abuse. Using CRE-LacZ reporter mice, we show that not only rewarding stimuli such as morphine, but also aversive stimuli such as stress, activate CRE-mediated transcription in the nucleus accumbens shell. Using viral-mediated gene transfer to locally alter the activity of CREB, we show that this manipulation affects morphine reward, as well as the preference for sucrose, a more natural reward. We then show that local changes in CREB activity induce a more general syndrome, by altering reactions to anxiogenic, aversive, and nociceptive stimuli as well. Increased CREB activity in the nucleus accumbens shell decreases an animals responses to each of these stimuli, whereas decreased CREB activity induces an opposite phenotype. These results show that environmental stimuli regulate CRE-mediated transcription within the nucleus accumbens shell, and that changes in CREB activity within this brain area subsequently alter gating between emotional stimuli and their behavioral responses. This control appears to be independent of the intrinsic appetitive or aversive value of the stimulus. The potential relevance of these data to addiction and mood disorders is discussed.


Biological Psychiatry | 2007

Brain-Derived Neurotrophic Factor Conditional Knockouts Show Gender Differences in Depression-Related Behaviors

Lisa M. Monteggia; Bryan W. Luikart; Michel Barrot; David Theobold; Irena Malkovska; Serge Nef; Luis F. Parada; Eric J. Nestler

BACKGROUND Indirect evidence suggests that loss of brain-derived neurotrophic factor (BDNF) from forebrain regions contributes to an individuals vulnerability for depression, whereas upregulation of BDNF in these regions is suggested to mediate the therapeutic effect of antidepressants. METHODS We have tested this hypothesis by generating two independent lines of conditional BDNF knockout mice in which the BDNF gene is deleted selectively in forebrain. RESULTS We show that male conditional knockouts exhibit hyperactivity but normal depression-related behaviors. In contrast, female conditional knockouts display normal locomotor activity but a striking increase in depression-like behavior. We also demonstrate that loss of BDNF in both male and female mice attenuates the actions of the antidepressant desipramine in the forced swim test. CONCLUSIONS These gender differences in depression-related behaviors in BDNF conditional knockout mice provide direct evidence for a role of BDNF in depression. The results also support the view that forebrain BDNF may be essential in mediating antidepressant efficacy.


Biological Psychiatry | 2003

Brain-derived neurotrophic factor in the ventral midbrain–nucleus accumbens pathway: a role in depression

Amelia J. Eisch; Carlos A. Bolaños; Joris De Wit; Ryan D Simonak; Cindy M Pudiak; Michel Barrot; Joost Verhaagen; Eric J. Nestler

BACKGROUND Previous work has shown that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are involved in appetitive behavior. Here we show that BDNF in the ventral tegmental area-nucleus accumbens (VTA-NAc) pathway is also involved in the development of a depression-like phenotype. METHODS Brain-derived neurotrophic factor signaling in the VTA-NAc pathway was altered in two complementary ways. One group of rats received intra-VTA infusion of vehicle or BDNF for 1 week. A second group of rats received intra-NAc injections of vehicle or adeno-associated viral vectors encoding full-length (TrkB.FL) or truncated (TrkB.T1) TrkB; the latter is kinase deficient and serves as a dominant-negative receptor. Rats were examined in the forced swim test and other behavioral tests. RESULTS Intra-VTA infusions of BDNF resulted in 57% shorter latency to immobility relative to control animals, a depression-like effect. Intra-NAc injections of TrkB.T1 resulted in and almost fivefold longer latency to immobility relative to TrkB.FL and control animals, an antidepressant-like effect. No effect on anxiety-like behaviors or locomotion was seen. CONCLUSIONS These data suggest that BDNF action in the VTA-NAc pathway might be related to development of a depression-like phenotype. This interpretation is intriguing in that it suggests a role for BDNF in the VTA-NAc that is opposite of the proposed role for BDNF in the hippocampus.


The Journal of Neuroscience | 2005

The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance

Dan Georgescu; Robert M. Sears; Jonathan D. Hommel; Michel Barrot; Carlos A. Bolaños; Donald J. Marsh; Maria A. Bednarek; James A. Bibb; Eleftheria Maratos-Flier; Eric J. Nestler; Ralph J. DiLeone

Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide with a prominent role in feeding and energy homeostasis. The rodent MCH receptor (MCH1R) is highly expressed in the nucleus accumbens shell (AcSh), a region that is important in the regulation of appetitive behavior. Here we establish a role for MCH and MCH1R in mediating a hypothalamic-limbic circuit that regulates feeding and related behaviors. Direct delivery of an MCH1R receptor antagonist to the AcSh blocked feeding and produced an antidepressant-like effect in the forced swim test, whereas intra-AcSh injection of MCH had the opposite effect. Expression studies demonstrated that MCH1R is present in both the enkephalin- and dynorphin-positive medium spiny neurons of the AcSh. Biochemical analysis in AcSh explants showed that MCH signaling blocks dopamine-induced phosphorylation of the AMPA glutamate receptor subunit GluR1 at Ser845. Finally, food deprivation, but not other stressors, stimulated cAMP response element-binding protein-dependent pathways selectively in MCH neurons of the hypothalamus, suggesting that these neurons are responsive to a specific set of physiologically relevant conditions. This work identifies a novel hypothalamic-AcSh circuit that influences appetitive behavior and mediates the antidepressant activity of MCH1R antagonists.


The Journal of Neuroscience | 2004

Induction of ΔFosB in Reward-Related Brain Structures after Chronic Stress

Linda I. Perrotti; Yuki Hadeishi; Paula G. Ulery; Michel Barrot; Lisa M. Monteggia; Ronald S. Duman; Eric J. Nestler

Acute and chronic stress differentially regulate immediate-early gene (IEG) expression in the brain. Although acute stress induces c-Fos and FosB, repeated exposure to stress desensitizes the c-Fos response, but FosB-like immunoreactivity remains high. Several other treatments differentially regulate IEG expression in a similar manner after acute versus chronic exposure. The form of FosB that persists after these chronic treatments has been identified as ΔFosB, a splice variant of the fosB gene. This study was designed to determine whether the FosB form induced after chronic stress is also ΔFosB and to map the brain regions and identify the cell populations that exhibit this effect. Western blotting, using an antibody that recognizes all Fos family members, revealed that acute restraint stress caused robust induction of c-Fos and full-length FosB, as well as a small induction of ΔFosB, in the frontal cortex (fCTX) and nucleus accumbens (NAc). The induction of c-Fos (and to some extent full-length FosB) was desensitized after 10 d of restraint stress, at which point levels of ΔFosB were high. A similar pattern was observed after chronic unpredictable stress. By use of immunohistochemistry, we found that chronic restraint stress induced ΔFosB expression predominantly in the fCTX, NAc, and basolateral amygdala, with lower levels of induction seen elsewhere. These findings establish that chronic stress induces ΔFosB in several discrete regions of the brain. Such induction could contribute to the long-term effects of stress on the brain.


Biological Psychiatry | 2008

Selective Loss of Brain-Derived Neurotrophic Factor in the Dentate Gyrus Attenuates Antidepressant Efficacy

Megumi Adachi; Michel Barrot; Anita E. Autry; David E.H. Theobald; Lisa M. Monteggia

BACKGROUND Brain-derived neurotrophic factor (BDNF) plays an important role in neural plasticity in the adult nervous system and has been suggested as a target gene for antidepressant treatment. The neurotrophic hypothesis of depression suggests that loss of BDNF from the hippocampus contributes to an increased vulnerability for depression, whereas upregulation of BDNF in the hippocampus is suggested to mediate antidepressant efficacy. METHODS We have used a viral-mediated gene transfer approach to assess the role of BDNF in subregions of the hippocampus in a broad array of behavioral paradigms, including depression-like behavior and antidepressant responses. We have combined the adeno-associated virus (AAV) with the Cre/loxP site-specific recombination system to induce the knockout of BDNF selectively in either the CA1 or dentate gyrus (DG) subregions of the hippocampus. RESULTS We show that the loss of BDNF in either the CA1 or the DG of the hippocampus does not alter locomotor activity, anxiety-like behavior, fear conditioning, or depression-related behaviors. However, the selective loss of BDNF in the DG but not the CA1 region attenuates the actions of desipramine and citalopram in the forced swim test. CONCLUSIONS These data suggest that the loss of hippocampal BDNF per se is not sufficient to mediate depression-like behavior. However, these results support the view that BDNF in the DG might be essential in mediating the therapeutic effect of antidepressants.


Neuron | 2003

RGS9 modulates dopamine signaling in the basal ganglia.

Zia Rahman; Johannes Schwarz; Stephen J. Gold; Venetia Zachariou; Marc N. Wein; Kwang Ho Choi; Abraham Kovoor; Ching-Kang Chen; Ralph J. DiLeone; Sigrid Schwarz; Dana E. Selley; Laura J. Sim-Selley; Michel Barrot; Robert R. Luedtke; David W. Self; Rachael L. Neve; Henry A. Lester; Melvin I. Simon; Eric J. Nestler

Regulators of G protein signaling (RGS) modulate heterotrimeric G proteins in part by serving as GTPase-activating proteins for Galpha subunits. We examined a role for RGS9-2, an RGS subtype highly enriched in striatum, in modulating dopamine D2 receptor function. Viral-mediated overexpression of RGS9-2 in rat nucleus accumbens (ventral striatum) reduced locomotor responses to cocaine (an indirect dopamine agonist) and to D2 but not to D1 receptor agonists. Conversely, RGS9 knockout mice showed heightened locomotor and rewarding responses to cocaine and related psychostimulants. In vitro expression of RGS9-2 in Xenopus oocytes accelerated the off-kinetics of D2 receptor-induced GIRK currents, consistent with the in vivo data. Finally, chronic cocaine exposure increased RGS9-2 levels in nucleus accumbens. Together, these data demonstrate a functional interaction between RGS9-2 and D2 receptor signaling and the behavioral actions of psychostimulants and suggest that psychostimulant induction of RGS9-2 represents a compensatory adaptation that diminishes drug responsiveness.


Biological Psychiatry | 2003

Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood.

Carlos A. Bolaños; Michel Barrot; Olivier Berton; Deanna Wallace-Black; Eric J. Nestler

BACKGROUND Methylphenidate (MPH) is a psychomotor stimulant medication widely used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Given the extent of prescribed use of MPH, and because MPH interacts with the same brain pathways activated by drugs of abuse, most research has focused on assessing MPHs potential to alter an individuals risk for adult drug addiction. Data examining other potential long-term behavioral consequences of early MPH administration are lacking, however. METHODS We investigated the long-term behavioral consequences of chronic administration of MPH (2.0 mg/kg) during pre- and periadolescent development in adult rats by assessing their behavioral reactivity to a variety of emotional stimuli. RESULTS The MPH-treated animals were significantly less responsive to natural rewards such as sucrose, novelty-induced activity, and sex compared with vehicle-treated control animals. In contrast, MPH-treated animals were significantly more sensitive to stressful situations, showed increased anxiety-like behaviors, and had enhanced plasma levels of corticosterone. CONCLUSIONS Chronic exposure to MPH during development leads to decreased sensitivity to rewarding stimuli and results in enhanced responsivity to aversive situations. These results highlight the need for further research to improve understanding of the effects of stimulants on the developing nervous system and the potential enduring effects resulting from early-life drug exposure.

Collaboration


Dive into the Michel Barrot's collaboration.

Top Co-Authors

Avatar

Ipek Yalcin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malika Benbouzid

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rachael L. Neve

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Waltisperger

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nada Choucair-Jaafar

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa M. Monteggia

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Luc-Henri Tessier

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge