Michel Batista
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michel Batista.
BMC Microbiology | 2010
Michel Batista; Fabricio K. Marchini; Paola Alejandra Fiorani Celedon; Stenio Perdigão Fragoso; Christian Macagnan Probst; Henrique Preti; Luiz Shozo Ozaki; Gregory A. Buck; Samuel Goldenberg; Marco A. Krieger
BackgroundThe three trypanosomatids pathogenic to men, Trypanosoma cruzi, Trypanosoma brucei and Leishmania major, are etiological agents of Chagas disease, African sleeping sickness and cutaneous leishmaniasis, respectively. The complete sequencing of these trypanosomatid genomes represented a breakthrough in the understanding of these organisms. Genome sequencing is a step towards solving the parasite biology puzzle, as there are a high percentage of genes encoding proteins without functional annotation. Also, technical limitations in protein expression in heterologous systems reinforce the evident need for the development of a high-throughput reverse genetics platform. Ideally, such platform would lead to efficient cloning and compatibility with various approaches. Thus, we aimed to construct a highly efficient cloning platform compatible with plasmid vectors that are suitable for various approaches.ResultsWe constructed a platform with a flexible structure allowing the exchange of various elements, such as promoters, fusion tags, intergenic regions or resistance markers. This platform is based on Gateway® technology, to ensure a fast and efficient cloning system. We obtained plasmid vectors carrying genes for fluorescent proteins (green, cyan or yellow), and sequences for the c-myc epitope, and tandem affinity purification or polyhistidine tags. The vectors were verified by successful subcellular localization of two previously characterized proteins (Tc Rab7 and PAR 2) and a putative centrin. For the tandem affinity purification tag, the purification of two protein complexes (ribosome and proteasome) was performed.ConclusionsWe constructed plasmids with an efficient cloning system and suitable for use across various applications, such as protein localization and co-localization, protein partner identification and protein expression. This platform also allows vector customization, as the vectors were constructed to enable easy exchange of its elements. The development of this high-throughput platform is a step closer towards large-scale trypanosome applications and initiatives.
Stem Cell Reviews and Reports | 2017
Addeli Bez Batti Angulski; Luiz Guilherme Achcar Capriglione; Michel Batista; Bruna H. Marcon; Alexandra Cristina Senegaglia; Marco Augusto Stimamiglio; Alejandro Correa
Adult stem cells have beneficial effects when exposed to damaged tissue due, at least in part, to their paracrine activity, which includes soluble factors and extracellular vesicles (EVs). Given the multiplicity of signals carried by these vesicles through the horizontal transfer of functional molecules, human mesenchymal stem cell (hMSCs) and CD133+ cell-derived EVs have been tested in various disease models and shown to recover damaged tissues. In this study, we profiled the protein content of EVs derived from expanded human CD133+ cells and bone marrow-derived hMSCs with the intention of better understanding the functions performed by these vesicles/cells and delineating the most appropriate use of each EV in future therapeutic procedures. Using LC-MS/MS analysis, we identified 623 proteins for expanded CD133+-EVs and 797 proteins for hMSCs-EVs. Although the EVs from both origins were qualitatively similar, when protein abundance was considered, hMSCs-EVs and CD133+-EVs were different. Gene Ontology (GO) enrichment analysis in CD133+-EVs revealed proteins involved in a variety of angiogenesis-related functions as well proteins related to the cytoskeleton and highly implicated in cell motility and cellular activation. In contrast, when overrepresented proteins in hMSCs-EVs were analyzed, a GO cluster of immune response-related genes involved with immune response-regulating factors acting on phagocytosis and innate immunity was identified. Together our data demonstrate that from the point of view of protein content, expanded CD133+-EVs and hMSCs-EVs are in part similar but also sufficiently different to reflect the main beneficial paracrine effects widely reported in pre-clinical studies using expanded CD133+ cells and/or hBM-MSCs.
Molecular Microbiology | 2017
Rafael Luis Kessler; Víctor Tulio Contreras; Newmar Pinto Marliére; Alessandra A. Guarneri; Luz Helena Villamizar Silva; Giovanny Augusto Camacho Antevere Mazzarotto; Michel Batista; Vanete Thomaz Soccol; Marco A. Krieger; Christian Macagnan Probst
Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle in which four distinct developmental forms alternate between the insect vector and the mammalian host. It is assumed that replicating epimastigotes present in the insect gut are not infective to mammalian host, a paradigm corroborated by the widely acknowledged fact that only this stage is susceptible to the complement system. In the present work, we establish a T. cruzi in vitro and in vivo epimastigogenesis model to analyze the biological aspects of recently differentiated epimastigotes (rdEpi). We show that both trypomastigote stages of T. cruzi (cell‐derived and metacyclic) are able to transform into epimastigotes (processes termed primary and secondary epimastigogenesis, respectively) and that rdEpi have striking properties in comparison to long‐term cultured epimastigotes: resistance to complement‐mediated lysis and both in vitro (cell culture) and in vivo (mouse) infectivity. Proteomics analysis of all T. cruzi stages reveled a cluster of proteins that were up‐regulated only in rdEpi (including ABC transporters and ERO1), suggesting a role for them in rdEpi virulence. The present work introduces a new experimental model for the study of host‐parasite interactions, showing that rdEpi can be infective to the mammalian host.
Journal of Proteomics | 2017
Michel Batista; Fernanda G. Kugeratski; Carla V. de Paula Lima; Christian Macagnan Probst; Rafael Luis Kessler; Lyris Martins Franco de Godoy; Marco A. Krieger; Fabricio K. Marchini
Protein phosphorylation and dephosphorylation events regulate many cellular processes. The identification of all phosphorylation sites and their association to a respective protein kinase or phosphatase is a challenging and crucial step to have a deeper understanding of the effects of signaling networks on cells. Pathogenic trypanosomatids have a large number of protein kinases and phosphatases in comparison to other organisms, which reinforces the relevance of the phosphorylation process in these early eukaryotes, nevertheless little is known about protein phosphorylation in these protozoa. In this context, the role of a MAP kinase-like kinase (MAPKLK1), observed to be essential to proliferation of procyclic Trypanosoma brucei, was studied. After silencing MAPKLK1 expression by RNAi, the cells were evaluated by SILAC MS-based proteomics and RNA-Seq. We identified 1756 phosphorylation sites of which 384 were not previously described in T. brucei. Despite being essential, few modulations were observed at the phosphorylation patterns and gene expression levels of MAPKLK1 knockdown. These indirect targets and potential substrates of MAPKLK1 are related to key cellular processes enriched to mRNA processing and stability control. SIGNIFICANCE The field of cell signaling is a promising topic of study for trypanosomatids, since little is known about this topic and the gene expression regulation occurs at post-transcriptional level. In this sense, the present work increases the knowledge on protein phosphorylation process in Trypanosoma brucei. We depleted one MAP kinase (MAPKLK1) of T. brucei and evaluated the effects on the cell. We showed that MAPKLK1 is essential to the cell, while few modulations on phosphoproteome, proteome and transcriptome are observed with its depletion. Although in low number, the changes in phosphoproteome were significant, presenting possible substrate candidates of MAPKLK1 and indirect targets related to mRNA processing and stability control, metabolic pathways, among others. This result provides insights in the phosphorylation network of T. brucei, a model organism that impacts human and animal health.
Memorias Do Instituto Oswaldo Cruz | 2015
Fernanda G. Kugeratski; Michel Batista; Alexandre Haruo Inoue; Bruno Dias Ramos; Marco A. Krieger; Fabricio K. Marchini
The functional characterisation of thousands of Trypanosoma cruzi genes remains a challenge. Reverse genetics approaches compatible with high-throughput cloning strategies can provide the tool needed to tackle this challenge. We previously published the pTcGW platform, composed by plasmid vectors carrying different options of N-terminal fusion tags based on Gateway® technology. Here, we present an improved 1.1 version of pTcGW vectors, which is characterised by a fully flexible structure allowing an easy customisation of each element of the vectors in a single cloning step. Additionally, both N and C-terminal fusions are available with new tag options for protein complexes purification. Three of the newly created vectors were successfully used to determine the cellular localisation of four T. cruzi proteins. The 1.1 version of pTcGW platform can be used in a variety of assays, such as protein overexpression, identification of protein-protein interaction and protein localisation. This powerful and versatile tool allows adding valuable functional information to T. cruzi genes and is freely available for scientific community.
Viruses | 2018
Andrea Martins-da-Silva; Erich Loza Telleria; Michel Batista; Fabricio K. Marchini; Yara Traub-Cseko; Antonio J. Tempone
Hematophagous insects transmit infectious diseases. Sand flies are vectors of leishmaniasis, but can also transmit viruses. We have been studying immune responses of Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. We identified a non-specific antiviral response in L. longipalpis LL5 embryonic cells when treated with non-specific double-stranded RNAs (dsRNAs). This response is reminiscent of interferon response in mammals. We are investigating putative effectors for this antiviral response. Secreted molecules have been implicated in immune responses, including interferon-related responses. We conducted a mass spectrometry analysis of conditioned medium from LL5 cells 24 and 48 h after dsRNA or mock treatment. We identified 304 proteins. At 24 h, 19 proteins had an abundance equal or greater than 2-fold change, while the levels of 17 proteins were reduced when compared to control cells. At the 48 h time point, these numbers were 33 and 71, respectively. The two most abundant secreted peptides at 24 h in the dsRNA-transfected group were phospholipid scramblase, an interferon-inducible protein that mediates antiviral activity, and forskolin-binding protein (FKBP), a member of the immunophilin family, which mediates the effect of immunosuppressive drugs. The transcription profile of most candidates did not follow the pattern of secreted protein abundance.
Scientific Reports | 2017
Juliana C. Amorim; Michel Batista; Elizabeth Sousa da Cunha; Aline C. R. Lucena; Carla V. de Paula Lima; Karla Sousa; Marco A. Krieger; Fabricio K. Marchini
Trypanosoma cruzi metacyclogenesis is a natural process that occurs inside the triatomine vector and corresponds to the differentiation of non-infective epimastigotes into infective metacyclic trypomastigotes. The biochemical alterations necessary for the differentiation process have been widely studied with a focus on adhesion and nutritional stress. Here, using a mass spectrometry approach, a large-scale phospho(proteome) study was performed with the aim of understanding the metacyclogenesis processes in a quantitative manner. The results indicate that major modulations in the phospho(proteome) occur under nutritional stress and after 12 and 24 h of adhesion. Significant changes involve key cellular processes, such as translation, oxidative stress, and the metabolism of macromolecules, including proteins, lipids, and carbohydrates. Analysis of the signalling triggered by kinases and phosphatases from 7,336 identified phosphorylation sites demonstrates that 260 of these sites are modulated throughout the differentiation process, and some of these modulated proteins have previously been identified as drug targets in trypanosomiasis treatment. To the best of our knowledge, this study provides the first quantitative results highlighting the modulation of phosphorylation sites during metacyclogenesis and the greater coverage of the proteome to the parasite during this process. The data are available via ProteomeXchange with identifier number PXD006171.
Chemical Biology & Drug Design | 2015
Celso O. Rezende; Larissa Albuquerque Oliveira; Bruno Assis de Oliveira; Camila G. de Almeida; Bianca S. Ferreira; Mireille Le Hyaric; Guilherme S. L. Carvalho; Maria Cristina S. Lourenço; Michel Batista; Fabricio K. Marchini; Vânia Lúcia da Silva; Cláudio Galuppo Diniz; Mauro V. Almeida
Different series of N‐alkylated diamines and their derivatives condensed to quinic acid were synthesized and tested for antibacterial properties against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The lipophilic chain and carbohydrate moiety modulate the antibacterial activity and the compounds showed a structure–activity relationship. Overall, 11 compounds displayed better activity than chloramphenicol against Gram‐positive and Gram‐negative bacteria. Monoalkylated amines 2a‐h displayed an activity similar to that of ethambutol against Mycobacterium tuberculosis.
Sub-cellular biochemistry | 2014
Fabricio K. Marchini; Lyris Martins Franco de Godoy; Michel Batista; Fernanda G. Kugeratski; Marco A. Krieger
The identification and localization of protein phosphorylation sites provide clues to what proteins or pathways might be activated in a given condition, helping to improve our understanding about signaling networks. Advances in strategies for enrichment of phosphorylated peptides/proteins, mass spectrometry (MS) instrumentation, and specific MS techniques for identification and quantification of post-translational modifications have allowed for large-scale mapping of phosphorylation sites, promoting the field of phosphoproteomics. The great promise of phosphoproteomics is to unravel the dynamics of signaling networks, a layer of the emerging field of systems biology. Until a few years ago only a small number of phosphorylation sites had been described. Following large-scale trends, recent phosphoproteomic studies have reported the mapping of thousands of phosphorylation sites in trypanosomatids. However, quantitative information about the regulation of such sites in different conditions is still lacking. In this chapter, we provide a historical overview of phosphoproteomic studies for trypanosomatids and discuss some challenges and perspectives in the field.
BMC Microbiology | 2014
Carla V. de Paula Lima; Michel Batista; Fernanda G. Kugeratski; Isabel M. Vincent; Maurilio J. Soares; Christian Macagnan Probst; Marco A. Krieger; Fabricio K. Marchini
BackgroundTrypanosoma cruzi, the etiologic agent of Chagas disease, alternates between distinct morphological and functional forms during its life cycle. Axenic multiplication and differentiation processes of this protozoan parasite can be reproduced in vitro, enabling the isolation and study of the different evolutionary forms. Although there are several publications attempting the cultivation of T. cruzi under chemically defined conditions, in our experience none of the published media are capable of maintaining T. cruzi in continuous growth.ResultsIn this work we modified a known chemically defined medium for Trypanosoma brucei growth. The resulting LM14 and LM14B defined media enabled cultivation of five different strains of T. cruzi for more than forty passages until now. The parasite′s biological characteristics such as morphology and differentiation to metacyclic trypomastigotes were maintained when defined media is used.ConclusionsThe establishment of a defined medium for T. cruzi cultivation is an important tool for basic biological research allowing several different approaches, providing new perspectives for further studies related to cell biology of this parasite.