Michel Besserve
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michel Besserve.
Nature | 2012
Nk Logothetis; O Eschenko; Yusuke Murayama; M Augath; T Steudel; Hc Evrard; Michel Besserve; A Oeltermann
Hippocampal ripples, episodic high-frequency field-potential oscillations primarily occurring during sleep and calmness, have been described in mice, rats, rabbits, monkeys and humans, and so far they have been associated with retention of previously acquired awake experience. Although hippocampal ripples have been studied in detail using neurophysiological methods, the global effects of ripples on the entire brain remain elusive, primarily owing to a lack of methodologies permitting concurrent hippocampal recordings and whole-brain activity mapping. By combining electrophysiological recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicates that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas. These findings suggest that during off-line memory consolidation, synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centres involved in sensory processing or potentially mediating procedural learning. Such a mechanism would cause minimal interference, enabling consolidation of hippocampus-dependent memory.
Biological Research | 2007
Michel Besserve; Karim Jerbi; François Laurent; Sylvain Baillet; Jacques Martinerie; Line Garnero
Classification algorithms help predict the qualitative properties of a subjects mental state by extracting useful information from the highly multivariate non-invasive recordings of his brain activity. In particular, applying them to Magneto-encephalography (MEG) and electro-encephalography (EEG) is a challenging and promising task with prominent practical applications to e.g. Brain Computer Interface (BCI). In this paper, we first review the principles of the major classification techniques and discuss their application to MEG and EEG data classification. Next, we investigate the behavior of classification methods using real data recorded during a MEG visuomotor experiment. In particular, we study the influence of the classification algorithm, of the quantitative functional variables used in this classifier, and of the validation method. In addition, our findings suggest that by investigating the distribution of classifier coefficients, it is possible to infer knowledge and construct functional interpretations of the underlying neural mechanisms of the performed tasks. Finally, the promising results reported here (up to 97% classification accuracy on 1-second time windows) reflect the considerable potential of MEG for the continuous classification of mental states.
Journal of Computational Neuroscience | 2010
Michel Besserve; Bernhard Schölkopf; Nk Logothetis; Stefano Panzeri
Characterizing how different cortical rhythms interact and how their interaction changes with sensory stimulation is important to gather insights into how these rhythms are generated and what sensory function they may play. Concepts from information theory, such as Transfer Entropy (TE), offer principled ways to quantify the amount of causation between different frequency bands of the signal recorded from extracellular electrodes; yet these techniques are hard to apply to real data. To address the above issues, in this study we develop a method to compute fast and reliably the amount of TE from experimental time series of extracellular potentials. The method consisted in adapting efficiently the calculation of TE to analog signals and in providing appropriate sampling bias corrections. We then used this method to quantify the strength and significance of causal interaction between frequency bands of field potentials and spikes recorded from primary visual cortex of anaesthetized macaques, both during spontaneous activity and during binocular presentation of naturalistic color movies. Causal interactions between different frequency bands were prominent when considering the signals at a fine (ms) temporal resolution, and happened with a very short (ms-scale) delay. The interactions were much less prominent and significant at coarser temporal resolutions. At high temporal resolution, we found strong bidirectional causal interactions between gamma-band (40–100 Hz) and slower field potentials when considering signals recorded within a distance of 2 mm. The interactions involving gamma bands signals were stronger during movie presentation than in absence of stimuli, suggesting a strong role of the gamma cycle in processing naturalistic stimuli. Moreover, the phase of gamma oscillations was playing a stronger role than their amplitude in increasing causations with slower field potentials and spikes during stimulation. The dominant direction of causality was mainly found in the direction from MUA or gamma frequency band signals to lower frequency signals, suggesting that hierarchical correlations between lower and higher frequency cortical rhythms are originated by the faster rhythms.
Journal of Neuroscience Methods | 2006
Mario Chavez; Michel Besserve; C. Adam; Jacques Martinerie
In experimental synchronization studies a continuous phase variable is commonly estimated from a scalar time series by means of its representation on the complex plane. The aim is to obtain a pair of functions [A(t), phi(t)] defining its instantaneous amplitude and phase, respectively. However, any arbitrary pair of functions cannot be considered as the amplitude and the phase of the real observable. Here, we point out some criteria that the pair [A(t), phi(t)] must observe to unambiguously define the instantaneous amplitude and phase of the observed signal. In this work, we illustrate how the complex representation may fail if the signal possesses a multi-component or a broadband spectra. We also point out a practical procedure to test whether a signal, not displaying a single oscillation at a unique frequency, has a narrow-band behavior. Implications for the study of phase interdependencies are illustrated and discussed. Phase dynamics estimated from electric brain activities recorded from an epileptic patient are also discussed.
NeuroImage | 2011
Michel Besserve; J. Martinerie; Line Garnero
Decoding experimental conditions from single trial Electroencephalographic (EEG) signals is becoming a major challenge for the study of brain function and real-time applications such as Brain Computer Interface. EEG source reconstruction offers principled ways to estimate the cortical activities from EEG signals. But to what extent it can enhance informative brain signals in single trial has not been addressed in a general setting. We tested this using the minimum norm estimate solution (MNE) to estimate spectral power and coherence features at the cortical level. With a fast implementation, we computed a support vector machine (SVM) classifier output from these quantities in real-time, without prior on the relevant functional networks. We applied this approach to single trial decoding of ongoing mental imagery tasks using EEG data recorded in 5 subjects. Our results show that reconstructing the underlying cortical network dynamics significantly outperforms a usual electrode level approach in terms of information transfer and also reduces redundancy between coherence and power features, supporting a decrease of volume conduction effects. Additionally, the classifier coefficients reflect the most informative features of network activity, showing an important contribution of localized motor and sensory brain areas, and of coherence between areas up to 6cm distance. This study provides a computationally efficient and interpretable strategy to extract information from functional networks at the cortical level in single trial. Moreover, this sets a general framework to evaluate the performance of EEG source reconstruction methods by their decoding abilities.
PLOS Biology | 2015
Michel Besserve; Scott C. Lowe; Nk Logothetis; Bernhard Schölkopf; Stefano Panzeri
Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.
Clinical Neurophysiology | 2008
Michel Besserve; Matthieu Philippe; Geneviève Florence; François Laurent; Line Garnero; Jacques Martinerie
OBJECTIVE Tracking the level of performance in cognitive tasks may be useful in environments, such as aircraft, in which the awareness of the pilots is critical for security. In this paper, the usefulness of EEG for the prediction of performance is investigated. METHODS We present a new methodology that combines various ongoing EEG measurements to predict performance level during a cognitive task. We propose a voting approach that combines the outputs of elementary support vector machine (SVM) classifiers derived from various sets of EEG parameters in different frequency bands. The spectral power and phase synchrony of the oscillatory activities are used to classify the periods of rapid reaction time (RT) versus the slow RT responses of each subject. RESULTS The voting algorithm significantly outperforms classical SVM and gives a good average classification accuracy across 12 subjects (71%) and an average information transfer rate (ITR) of 0.49bit/min. The main discriminating activities are laterally distributed theta power and anterio-posterior alpha synchronies, possibly reflecting the role of a visual-attentional network in performance. CONCLUSIONS Power and synchrony measurements enable the discrimination between periods of high average reaction time versus periods of low average reaction time in a same subject. Moreover, the proposed approach is easy to interpret as it combines various types of measurements for classification, emphasizing the most informative. SIGNIFICANCE Ongoing EEG recordings can predict the level of performance during a cognitive task. This can lead to real-time EEG monitoring devices for the anticipation of human mistakes.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Juan F. Ramirez-Villegas; Nk Logothetis; Michel Besserve
Significance Sharp-wave–ripple (SPW-R) episodes observed in the electrical activity of mammalian hippocampus are traditionally associated to memory consolidation during sleep but have been recently observed during active behavior. Their involvement in various cognitive functions suggests the existence of SPW-R subtypes engaged in distinct neuronal activity patterns at multiple scales. We use concurrent electrophysiological and functional MRI (fMRI) recordings in macaque monkeys to investigate this hypothesis. We discover several subtypes of SPW-R with distinct electrophysiological properties. Importantly, fMRI recordings reveal differences between the large-scale signatures of SPW-R subtypes, indicating differentiated interactions with neocortex, and contributions of neuromodulatory pathways to the SPW-R phenomenon. Understanding the detailed properties of hippocampal SPW-Rs at multiple scales will provide new insights on the function of memory systems. Sharp-wave–ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions.
Advances in Complex Systems | 2013
David Balduzzi; Pedro A. Ortega; Michel Besserve
This article investigates how neurons can use metabolic cost to facilitate learning at a population level. Although decision-making by individual neurons has been extensively studied, questions regarding how neurons should behave to cooperate effectively remain largely unaddressed. Under assumptions that capture a few basic features of cortical neurons, we show that constraining reward maximization by metabolic cost aligns the information content of actions with their expected reward. Thus, metabolic cost provides a mechanism whereby neurons encode expected reward into their outputs. Further, aside from reducing energy expenditures, imposing a tight metabolic constraint also increases the accuracy of empirical estimates of rewards, increasing the robustness of distributed learning. Finally, we present two implementations of metabolically constrained learning that confirm our theoretical finding. These results suggest that metabolic cost may be an organizing principle underlying the neural code, and may also provide a useful guide to the design and analysis of other cooperating populations.
Frontiers in Neural Circuits | 2016
Rikkert Hindriks; Xerxes D. Arsiwalla; T Panagiotaropoulos; Michel Besserve; Paul F. M. J. Verschure; Nk Logothetis; Gustavo Deco
Multi-electrode recordings of local field potentials (LFPs) provide the opportunity to investigate the spatiotemporal organization of neural activity on the scale of several millimeters. In particular, the phases of oscillatory LFPs allow studying the coordination of neural oscillations in time and space and to tie it to cognitive processing. Given the computational roles of LFP phases, it is important to know how they relate to the phases of the underlying current source densities (CSDs) that generate them. Although CSDs and LFPs are distinct physical quantities, they are often (implicitly) identified when interpreting experimental observations. That this identification is problematic is clear from the fact that LFP phases change when switching to different electrode montages, while the underlying CSD phases remain unchanged. In this study we use a volume-conductor model to characterize discrepancies between LFP and CSD phase-patterns, to identify the contributing factors, and to assess the effect of different electrode montages. Although we focus on cortical LFPs recorded with two-dimensional (Utah) arrays, our findings are also relevant for other electrode configurations. We found that the main factors that determine the discrepancy between CSD and LFP phase-patterns are the frequency of the neural oscillations and the extent to which the laminar CSD profile is balanced. Furthermore, the presence of laminar phase-differences in cortical oscillations, as commonly observed in experiments, precludes identifying LFP phases with those of the CSD oscillations at a given cortical depth. This observation potentially complicates the interpretation of spike-LFP coherence and spike-triggered LFP averages. With respect to reference strategies, we found that the average-reference montage leads to larger discrepancies between LFP and CSD phases as compared with the referential montage, while the Laplacian montage reduces these discrepancies. We therefore advice to conduct analysis of two-dimensional LFP recordings using the Laplacian montage.