Michel Dreano
Merck KGaA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michel Dreano.
Structure | 1995
Xuliang Jiang; Michel Dreano; David R Buckler; Shirley Vui Yen Cheng; Arnaud Ythier; Hao Wu; Wayne A. Hendrickson; Nabil El Tayar
BACKGROUND Glycoprotein hormones influence the development and function of the ovary, testis and thyroid by binding to specific high-affinity receptors. The extracellular domains of these receptors are members of the leucine-rich repeat (LRR) protein superfamily and are responsible for the high-affinity binding. The crystal structure of a glycoprotein hormone, namely human choriogonadotropin (hCG), is known, but neither the receptor structure, mode of hormone binding, nor mechanism for activation, have been established. RESULTS Despite very low sequence similarity between exon-demarcated LRRs in the receptors and the LRRs of porcine ribonuclease inhibitor (RI), the secondary structures for the two repeat sets are found to be alike Constraints on curvature and beta-barrel geometry from the sequence pattern for repeated beta alpha units suggest that the receptors contain three-dimensional structures similar to that of RI. With the RI crystal structure as a template, models were constructed for exons 2-8 of the receptors. The model for this portion of the choriogonadotropin receptor is complementary in shape and electrostatic characteristics to the surface of hCG at an identified focus of hormone-receptor interaction. CONCLUSIONS The predicted models for the structures and mode of hormone binding of the glycoprotein hormone receptors are to a large extent consistent with currently available biochemical and mutational data. Repeated sequences in beta-barrel proteins are shown to have general implications for constraints on structure. Averaging techniques used here to recognize the structural motif in these receptors should also apply to other proteins with repeated sequences.
Nature | 2011
Guozhou Xu; Yu-Chih Lo; Qiubai Li; Gennaro Napolitano; Xuefeng Wu; Xuliang Jiang; Michel Dreano; Michael Karin; Hao Wu
Inhibitor of κB (IκB) kinase (IKK) phosphorylates IκB proteins, leading to their degradation and the liberation of nuclear factor κB for gene transcription. Here we report the crystal structure of IKKβ in complex with an inhibitor, at a resolution of 3.6 Å. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, α-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix–loop–helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with IκBα that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKKβ dimerization, but dimerization per se is not important for maintaining IKKβ activity and instead is required for IKKβ activation. Other IKK family members, IKKα, TBK1 and IKK-i, may have a similar trimodular architecture and function.
Molecular and Cellular Neuroscience | 2004
Marina Pizzi; Ilenia Sarnico; Flora Boroni; Marina Benarese; Michel Dreano; Gianni Garotta; Alessandra Valerio; PierFranco Spano
We investigated the effects of IL-6 and a chimeric derivative of IL-6 and soluble IL-6 receptor (IL6RIL6 chimera) on excitotoxic injury in rat organotypic hippocampal slices. Brief application of N-methyl-d-aspartate (NMDA) induced astrocyte reactivity, neuron cell death, and oligodendrocyte degeneration, the latter caused by secondary activation of AMPA/kainate receptors. Both these cytokines rescued neurons and oligodendrocytes, albeit the chimeric compound was much more potent and efficient than IL-6. No change was produced on reactive astrocytosis. The cytokines preserved myelin basic protein (MBP) production in slices exposed to excitotoxic insult, and when applied singularly for a week, they also enhanced both MBP and proteolipid protein expression. These effects occurred through activating the signal transducer gp130 and were associated with stimulation of transcription factors STAT1 and STAT3. Our results suggest that IL-6 and IL6RIL6 may prove to be valuable in treating neurodegenerative and demyelinating diseases.
Molecular and Cellular Neuroscience | 2002
Alessandra Valerio; Marina Ferrario; Michel Dreano; Gianni Garotta; PierFranco Spano; Marina Pizzi
We investigated the effects of a chimeric protein (IL6RIL6 chimera) containing interleukin-6 (IL-6) fused to its soluble receptor (sIL-6R) on the proliferation and/or differentiation of rat oligodendrocyte progenitor cells (OPCs) and on oligodendrocyte survival. Exposure of OPCs to IL6RIL6 chimera for 48 h induced a dose-dependent decrease of bromodeoxyuridine (BrdU) incorporation. IL6RIL6 chimera treatment for 48 h also strongly increased the reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) by mitochondrial enzymes and enhanced oligodendrocyte staining with a mitochondrial fluorescent dye. A strong, dose-dependent increase in the number and length of processes immunostained for early (galactocerebroside) or late (myelin basic protein) oligodendrocyte differentiation markers was revealed after OPC treatment with IL6RIL6 chimera for 2-7 days, respectively. Moreover, treatment with IL6RIL6 chimera improved oligodendrocyte survival. The chimera-induced increase of oligodendrocyte arborization was mimicked, although with lower efficacy, by ciliary neurotrophic factor (CNTF) but not by IL-6 and was reduced in the presence of a gp130 soluble peptide which is able to inhibit the gp130-mediated signals of the IL-6/sIL-6R complex. Oligodendrocyte treatment with IL6RIL6 chimera for 30 min induced both signal transducer and the activator of transcription-1 (STAT-1) and STAT-3 phosphorylation and nuclear translocation. We conclude that, by interacting with membrane gp130 and possibly by activating Janus kinase/STAT pathways, IL6RIL6 chimera induces OPCs to differentiate into mature oligodendrocytes, promotes their survival, and could deserve investigation as a therapeutic strategy for enhancing remyelination.
Neuropathology | 2006
Emile Andriambeloson; Caroline Baillet; Pierre-Alain Vitte; Gianni Garotta; Michel Dreano; Noelle Callizot
Neuropathy is the most severe and the least understood complication of diabetes. We investigated the potential neuroprotective effect of IL‐6 therapy in an experimental model of diabetic neuropathy. A single i.v. injection of streptozotocin (STZ, 55 mg/kg) was used to induce experimental diabetes in adult males. IL‐6 (1, 10 or 30 µg/kg) was administrated either intraperitoneally on a daily basis or subcutaneously (s.c.) on a daily, on a three times or one time per week basis, starting at day 10 post‐STZ. A decrease in sensory nerve conduction velocity (SNCV), indicative of neuropathy, is seen in STZ rats as early as day 10 post‐STZ, a time at which blood glycaemia is already maximal. At later time points, this electrophysiological impairment became severe and clinically apparent by affecting tail flick latency. Motor dysfunction defined by a significant increase in compound muscle action potential (CMAP) latency was also recorded. At the completion of the study (day 40 post‐STZ), histological examination revealed significant axonopathy and myelin loss, along with an increase in the proportion of fibers with abnormal appearance in sciatic nerves of STZ rats. These changes were not observed in non‐diabetic rats and were significantly prevented by IL‐6 treatment. The optimal dose appeared to be 10 µg/kg s.c. three injections per week, which showed a better effect in most of the parameters studied than 4‐methylcatechol, a NGF‐like neuroprotective compound. Once weekly and three times weekly administrations of IL‐6 were as effective as daily treatment. Taken together, these results support the potential neuroprotective actions of IL‐6. The fact that the half‐life of IL‐6 is only approximately 5 h while weekly dosing was neuroprotective strongly suggests activation by IL‐6 of effector molecule(s) with longer duration of action.
Nature | 2011
Guozhou Xu; Yu-Chih Lo; Qiubai Li; Gennaro Napolitano; Xuefeng Wu; Xuliang Jiang; Michel Dreano; Michael Karin; Hao Wu
Inhibitor of κB (IκB) kinase (IKK) phosphorylates IκB proteins, leading to their degradation and the liberation of nuclear factor κB for gene transcription. Here we report the crystal structure of IKKβ in complex with an inhibitor, at a resolution of 3.6 Å. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, α-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix–loop–helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with IκBα that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKKβ dimerization, but dimerization per se is not important for maintaining IKKβ activity and instead is required for IKKβ activation. Other IKK family members, IKKα, TBK1 and IKK-i, may have a similar trimodular architecture and function.
Journal of Virology | 2004
Patrizia Caposio; Michel Dreano; Gianni Garotta; Giorgio Gribaudo; Santo Landolfo
ABSTRACT Human cytomegalovirus (HCMV) exploits the host transcription factor NF-κB to enhance its own replication, dissemination, and reactivation from latency. Here we report that HCMV infection activates the upstream IκB kinase (IKK) complex and that its catalytic IKK2 subunit is required for HCMV-induced NF-κB activation, as well as the replication of different HCMV strains. These results indicate that IKK2 is essential for HCMV replication and emphasize the feasibility of blocking NF-κB activation as a way of inhibiting infection.
Cytokine | 2008
Guido Alberto Massimo Tiberio; Laura Tiberio; Anna Benetti; Edoardo Cervi; Nadia Montani; Michel Dreano; Gianni Garotta; Katia Cerea; Nathalie Steimberg; GianPietro Pandolfo; Andrea Ferrari-Bravo; Giovanna Mazzoleni; Stefano Maria Giulini; Luisa Schiaffonati
Major hepatic resection in cirrhotic patients is associated with impaired liver regeneration and failure, leading to high peri-operative mortality. In this work, the causes of defective regeneration in cirrhotic liver and the utility of IL-6 treatment were investigated in an experimental model combining cirrhosis and partial hepatectomy in the rat. Relative to normal controls, decompensated cirrhotic animals showed decreased survival, while compensated cirrhotic animals showed similar survival but reduced hepatic DNA synthesis and newly regenerated liver mass amount. Defective liver regeneration was associated with a decrease in STAT3 and NF-kB activation, consistent with an increased accumulation of their respective inhibitors PIAS3 and IkBalpha, and with a decreased induction of Bcl-xL. Treatment with recombinant IL-6 enhanced survival of decompensated cirrhotic animals, while it did not affect survival of compensated cirrhotic animals but sustained liver regeneration, by restoring STAT3 and NF-kB activation and Bcl-xL induction to the levels found in normal controls. The pro-growth effects exerted by IL-6 treatment in cirrhotic liver were attained also at low, pharmacologically acceptable doses. In conclusion, our results suggest that IL-6 treatment may be therapeutic in major resection of cirrhotic liver.
Nature | 2011
Guozhou Xu; Yu-Chih Lo; Qiubai Li; Gennaro Napolitano; Xuefeng Wu; Xuliang Jiang; Michel Dreano; Michael Karin; Hao Wu
Inhibitor of κB (IκB) kinase (IKK) phosphorylates IκB proteins, leading to their degradation and the liberation of nuclear factor κB for gene transcription. Here we report the crystal structure of IKKβ in complex with an inhibitor, at a resolution of 3.6 Å. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, α-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix–loop–helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with IκBα that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKKβ dimerization, but dimerization per se is not important for maintaining IKKβ activity and instead is required for IKKβ activation. Other IKK family members, IKKα, TBK1 and IKK-i, may have a similar trimodular architecture and function.
Nature | 2011
Guozhou Xu; Yu-Chih Lo; Qiubai Li; Gennaro Napolitano; Xuefeng Wu; Xuliang Jiang; Michel Dreano; Michael Karin; Hao Wu
Inhibitor of κB (IκB) kinase (IKK) phosphorylates IκB proteins, leading to their degradation and the liberation of nuclear factor κB for gene transcription. Here we report the crystal structure of IKKβ in complex with an inhibitor, at a resolution of 3.6 Å. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, α-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix–loop–helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with IκBα that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKKβ dimerization, but dimerization per se is not important for maintaining IKKβ activity and instead is required for IKKβ activation. Other IKK family members, IKKα, TBK1 and IKK-i, may have a similar trimodular architecture and function.