Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel Garneau is active.

Publication


Featured researches published by Michel Garneau.


Antimicrobial Agents and Chemotherapy | 2010

Preclinical characterization of BI 201335, a C-terminal carboxylic acid inhibitor of the hepatitis C virus NS3-NS4A protease.

Peter W. White; Montse Llinas-Brunet; Ma’an Amad; Richard C. Bethell; Gordon Bolger; Michael G. Cordingley; Jianmin Duan; Michel Garneau; Lisette Lagacé; Diane Thibeault; George Kukolj

ABSTRACT BI 201335 is a hepatitis C virus (HCV) NS3-NS4A (NS3 coexpressed with NS4A) protease inhibitor that has been shown to have potent clinical antiviral activity. It is a highly optimized noncovalent competitive inhibitor of full-length NS3-NS4A proteases of HCV genotypes 1a and 1b with Ki values of 2.6 and 2.0 nM, respectively. Ki values of 2 to 230 nM were measured against the NS3-NS4A proteases of HCV genotypes 2 to 6, whereas it was a very weak inhibitor of cathepsin B and showed no measurable inhibition of human leukocyte elastase. BI 201335 was also shown to be a potent inhibitor of HCV RNA replication in vitro with 50% effective concentrations (EC50s) of 6.5 and 3.1 nM obtained in genotype 1a and 1b replicon assays. Combinations of BI 201335 with either interferon or ribavirin had additive effects in replicon assays. BI 201335 had good permeability in Caco-2 cell assays and high metabolic stability after incubation with human, rat, monkey, and dog liver microsomes. Its good absorption, distribution, metabolism, and excretion (ADME) profile in vitro, as well as in rat, monkey, and dog, predicted good pharmacokinetics (PK) in humans. Furthermore, drug levels were significantly higher in rat liver than in plasma, suggesting that distribution to the target organ may be especially favorable. BI 201335 is a highly potent and selective NS3-NS4A protease inhibitor with good in vitro and animal ADME properties, consistent with its good human PK profile, and shows great promise as a treatment for HCV infection.


Journal of Medicinal Chemistry | 2010

Discovery of a potent and selective noncovalent linear inhibitor of the hepatitis C virus NS3 protease (BI 201335).

Montse Llinas-Brunet; Murray D. Bailey; Nathalie Goudreau; Punit Bhardwaj; Josée Bordeleau; Michael Bös; Yves Bousquet; Michael G. Cordingley; Jiamin Duan; Pat Forgione; Michel Garneau; Elise Ghiro; Vida Gorys; Sylvie Goulet; Ted Halmos; Stephen H. Kawai; Julie Naud; Marc-André Poupart; Peter W. White

C-Terminal carboxylic acid containing inhibitors of the NS3 protease are reported. A novel series of linear tripeptide inhibitors that are very potent and selective against the NS3 protease are described. A substantial contribution to the potency of these linear inhibitors arises from the introduction of a C8 substituent on the B-ring of the quinoline moiety found on the P2 of these inhibitors. The introduction of a C8 methyl group results not only in a modest increase in the cell-based potency of these inhibitors but more importantly in a much better pharmacokinetic profile in rats as well. Exploration of C8-substitutions led to the identification of the bromo derivative as the best group at this position, resulting in a significant increase in the cell-based potency of this class of inhibitors. Structure-activity studies on the C8-bromo derivatives ultimately led to the discovery of clinical candidate 29 (BI 201335), a very potent and selective inhibitor of genotype1 NS3 protease with a promising PK profile in rats.


Pharmaceutical Research | 2013

Human Intestinal Transporter Database: QSAR Modeling and Virtual Profiling of Drug Uptake, Efflux and Interactions

Alexander Sedykh; Denis Fourches; Jianmin Duan; Oliver Hucke; Michel Garneau; Hao Zhu; Pierre R. Bonneau; Alexander Tropsha

PurposeMembrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles.MethodsUsing public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1.ResultsQSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71–100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds.ConclusionsThe compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles.


Antimicrobial Agents and Chemotherapy | 2014

Preclinical Profile of BI 224436, a Novel HIV-1 Non-Catalytic Site Integrase Inhibitor

Craig Fenwick; Ma’an Amad; Murray D. Bailey; Richard C. Bethell; Michael Bös; Pierre R. Bonneau; Michael G. Cordingley; René Coulombe; Jianmin Duan; Paul Edwards; Lee Fader; Anne-Marie Faucher; Michel Garneau; Araz Jakalian; Stephen H. Kawai; Louie Lamorte; Steven R. LaPlante; Laibin Luo; Steve Mason; Marc-André Poupart; Nathalie Rioux; Patricia Schroeder; Bruno Simoneau; Sonia Tremblay; Youla S. Tsantrizos; Myriam Witvrouw; Christiane Yoakim

ABSTRACT BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3′-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


Antimicrobial Agents and Chemotherapy | 2013

Phosphatidylinositol 4-Kinase III Beta Is Essential for Replication of Human Rhinovirus and Its Inhibition Causes a Lethal Phenotype In Vivo

Catherine Spickler; Julie Lippens; Marie-Kristine Laberge; Sophie Desmeules; Edith Bellavance; Michel Garneau; Tim Guo; Oliver Hucke; Pieter Leyssen; Johan Neyts; Frédéric H. Vaillancourt; Anne Decor; Jeff O'Meara; Michael Franti; Annick Gauthier

ABSTRACT Human rhinovirus (HRV) is the predominant cause of the common cold, but more importantly, infection may have serious repercussions in asthmatics and chronic obstructive pulmonary disorder (COPD) patients. A cell-based antiviral screen against HRV was performed with a subset of our proprietary compound collection, and an aminothiazole series with pan-HRV species and enteroviral activity was identified. The series was found to act at the level of replication in the HRV infectious cycle. In vitro selection and sequencing of aminothiazole series-resistant HRV variants revealed a single-nucleotide mutation leading to the amino acid change I42V in the essential HRV 3A protein. This same mutation has been previously implicated in resistance to enviroxime, a former clinical-stage antipicornavirus agent. Enviroxime-like compounds have recently been shown to target the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIβ). A good correlation between PI4KIIIβ activity and HRV antiviral potency was found when analyzing the data over 80 compounds of the aminothiazole series, covering a 750-fold potency range. The mechanism of action through PI4KIIIβ inhibition was further demonstrated by small interfering RNA (siRNA) knockdown of PI4KB, which reduced HRV replication and also increased the potency of the PI4KIIIβ inhibitors. Inhibitors from two different structural classes with promising pharmacokinetic profiles and with very good selectivity for PI4KIIIβ were used to dissociate compound-related toxicity from target-related toxicity. Mortality was seen in all dosing groups of mice treated with either compound, therefore suggesting that short-term inhibition of PI4KIIIβ is deleterious.


Journal of Medicinal Chemistry | 2014

Discovery of Hepatitis C Virus NS3-4A Protease Inhibitors with Improved Barrier to Resistance and Favorable Liver Distribution

Benoît Moreau; Jeff O’Meara; Josée Bordeleau; Michel Garneau; Cédrickx Godbout; Vida Gorys; Mélissa Leblanc; Elisia Villemure; Peter W. White; Montse Llinas-Brunet

Given the emergence of resistance observed for the current clinical-stage hepatitis C virus (HCV) NS3 protease inhibitors, there is a need for new inhibitors with a higher barrier to resistance. We recently reported our rational approach to the discovery of macrocyclic acylsulfonamides as HCV protease inhibitors addressing potency against clinically relevant resistant variants. Using X-ray crystallography of HCV protease variant/inhibitor complexes, we shed light on the complex structural mechanisms by which the D168V and R155K residue mutations confer resistance to NS3 protease inhibitors. Here, we disclose SAR investigation and ADME/PK optimization leading to the identification of inhibitors with significantly improved potency against the key resistant variants and with increased liver partitioning.


Bioorganic & Medicinal Chemistry Letters | 2010

N-Acetamideindolecarboxylic acid allosteric ‘finger-loop’ inhibitors of the hepatitis C virus NS5B polymerase: discovery and initial optimization studies

Pierre L. Beaulieu; Eric Jolicoeur; James Gillard; Christian Brochu; René Coulombe; Nathalie Dansereau; Jianmin Duan; Michel Garneau; Araz Jakalian; Peter Kühn; Lisette Lagacé; Steven R. LaPlante; Ginette McKercher; Stéphane Perrault; Martin Poirier; Marc-André Poupart; Timothy Stammers; Louise Thauvette; Bounkham Thavonekham; George Kukolj

SAR studies at the N(1)-position of allosteric indole-based HCV NS5B inhibitors has led to the discovery of acetamide derivatives with good cellular potency in subgenomic replicons (EC(50) <200 nM). This class of inhibitors displayed improved physicochemical properties and favorable ADME-PK profiles over previously described analogs in this class.


Bioorganic & Medicinal Chemistry Letters | 2011

From benzimidazole to indole-5-carboxamide Thumb Pocket I inhibitors of HCV NS5B polymerase. Part 1: Indole C-2 SAR and discovery of diamide derivatives with nanomolar potency in cell-based subgenomic replicons

Pierre L. Beaulieu; James Gillard; Eric Jolicoeur; Jianmin Duan; Michel Garneau; George Kukolj; Marc-André Poupart

Replacement of the benzimidazole core of allosteric Thumb Pocket 1 HCV NS5B finger loop inhibitors by more lipophilic indole derivatives provided up to 30-fold potency improvements in cell-based subgenomic replicon assays. Optimization of C-2 substitution on the indole core led to the identification of analogs with EC(50)<100 nM and modulated the pharmacokinetic properties of the inhibitors based on preliminary data from in vitro ADME profiles and in vivo rat PK.


Antimicrobial Agents and Chemotherapy | 2012

The Liver Partition Coefficient-Corrected Inhibitory Quotient and the Pharmacokinetic-Pharmacodynamic Relationship of Directly Acting Anti-Hepatitis C Virus Agents in Humans

Jianmin Duan; Gordon Bolger; Michel Garneau; Ma’an Amad; Joëlle Batonga; Hélène Montpetit; François Otis; Martin Jutras; Nicole Lapeyre; Manon Rhéaume; George Kukolj; Peter W. White; Richard C. Bethell; Michael G. Cordingley

ABSTRACT Pharmacokinetic-pharmacodynamic (PK-PD) data analyses from early hepatitis C virus (HCV) clinical trials failed to show a good correlation between the plasma inhibitory quotient (IQ) and antiviral activity of different classes of directly acting antiviral agents (DAAs). The present study explored whether use of the liver partition coefficient-corrected IQ (LCIQ) could improve the PK-PD relationship. Animal liver partition coefficients (Kpliver) were calculated from liver to plasma exposure ratios. In vitro hepatocyte partition coefficients (Kphep) were determined by the ratio of cellular to medium drug concentrations. Human Kpliver was predicted using an in vitro-in vivo proportionality method: the species-averaged animal Kpliver multiplied by the ratio of human Kphep over those in animals. LCIQ was calculated using the IQ multiplied by the predicted human Kpliver. Our results demonstrated that the in vitro-in vivo proportionality approach provided the best human Kpliver prediction, with prediction errors of <45% for all 5 benchmark drugs evaluated (doxorubicin, verapamil, digoxin, quinidine, and imipramine). Plasma IQ values correlated poorly (r2 of 0.48) with maximum viral load reduction and led to a corresponding 50% effective dose (ED50) IQ of 42, with a 95% confidence interval (CI) of 0.1 to 148534. In contrast, the LCIQ-maximum VLR relationship fit into a typical sigmoidal curve with an r2 value of 0.95 and an ED50 LCIQ of 121, with a 95% CI of 83 to 177. The present study provides a novel human Kpliver prediction model, and the LCIQ correlated well with the viral load reductions observed in short-term HCV monotherapy of different DAAs and provides a valuable tool to guide HCV drug discovery.


Bioorganic & Medicinal Chemistry Letters | 2012

Inhibition of HIV-1 capsid assembly: Optimization of the antiviral potency by site selective modifications at N1, C2 and C16 of a 5-(5-furan-2-yl-pyrazol-1-yl)-1H-benzimidazole scaffold

Martin Tremblay; Pierre R. Bonneau; Yves Bousquet; Patrick Deroy; Jianmin Duan; Martin Duplessis; Alexandre Gagnon; Michel Garneau; Nathalie Goudreau; Ingrid Guse; Oliver Hucke; Stephen H. Kawai; Christopher T. Lemke; Stephen W. Mason; Bruno Simoneau; Simon Surprenant; Steve Titolo; Christiane Yoakim

A uHTS campaign led to the discovery of a 5-(5-furan-2-ylpyrazol-1-yl)-1H-benzimidazole series that inhibits assembly of HIV-1 capsid. Synthetic manipulations at N1, C2 and C16 positions improved the antiviral potency by a . The X-ray structure of 33 complexed with the capsid N-terminal domain allowed identification of major interactions between the inhibitor and the protein.

Collaboration


Dive into the Michel Garneau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge