Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel Guipponi is active.

Publication


Featured researches published by Michel Guipponi.


Nature Genetics | 2009

15q13.3 microdeletions increase risk of idiopathic generalized epilepsy

Ingo Helbig; Mefford Hc; Andrew J. Sharp; Michel Guipponi; Marco Fichera; Andre Franke; Hiltrud Muhle; Carolien G.F. de Kovel; Carl Baker; Sarah von Spiczak; Katherine L. Kron; Ines Steinich; Ailing A. Kleefuß-Lie; Costin Leu; Verena Gaus; Bettina Schmitz; Karl Martin Klein; Philipp S. Reif; Felix Rosenow; Yvonne G. Weber; Holger Lerche; Fritz Zimprich; Lydia Urak; Karoline Fuchs; Martha Feucht; Pierre Genton; Pierre Thomas; Frank Visscher; Gerrit Jan De Haan; Rikke S. Møller

We identified 15q13.3 microdeletions encompassing the CHRNA7 gene in 12 of 1,223 individuals with idiopathic generalized epilepsy (IGE), which were not detected in 3,699 controls (joint P = 5.32 × 10−8). Most deletion carriers showed common IGE syndromes without other features previously associated with 15q13.3 microdeletions, such as intellectual disability, autism or schizophrenia. Our results indicate that 15q13.3 microdeletions constitute the most prevalent risk factor for common epilepsies identified to date.


PLOS Genetics | 2010

Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies

Mefford Hc; Hiltrud Muhle; Philipp Ostertag; Sarah von Spiczak; Karen Buysse; Carl Baker; Andre Franke; Alain Malafosse; Pierre Genton; Pierre Thomas; Christina A. Gurnett; Stefan Schreiber; Alexander G. Bassuk; Michel Guipponi; Ulrich Stephani; Ingo Helbig; Evan E. Eichler

Epilepsy is one of the most common neurological disorders in humans with a prevalence of 1% and a lifetime incidence of 3%. Several genes have been identified in rare autosomal dominant and severe sporadic forms of epilepsy, but the genetic cause is unknown in the vast majority of cases. Copy number variants (CNVs) are known to play an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID), autism, and schizophrenia. Genome-wide studies of copy number variation in epilepsy have not been performed. We have applied whole-genome oligonucleotide array comparative genomic hybridization to a cohort of 517 individuals with various idiopathic, non-lesional epilepsies. We detected one or more rare genic CNVs in 8.9% of affected individuals that are not present in 2,493 controls; five individuals had two rare CNVs. We identified CNVs in genes previously implicated in other neurodevelopmental disorders, including two deletions in AUTS2 and one deletion in CNTNAP2. Therefore, our findings indicate that rare CNVs are likely to contribute to a broad range of generalized and focal epilepsies. In addition, we find that 2.9% of patients carry deletions at 15q11.2, 15q13.3, or 16p13.11, genomic hotspots previously associated with ID, autism, or schizophrenia. In summary, our findings suggest common etiological factors for seemingly diverse diseases such as ID, autism, schizophrenia, and epilepsy.


Nature Cell Biology | 2001

Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP

Natasha K. Hussain; Sarah Jenna; Michael Glogauer; Christopher C. Quinn; Sylwia Wasiak; Michel Guipponi; Brian K. Kay; Thomas P. Stossel; Nathalie Lamarche-Vane; Peter S. McPherson

Intersectin-s is a modular scaffolding protein regulating the formation of clathrin-coated vesicles. In addition to the Eps15 homology (EH) and Src homology 3 (SH3) domains of intersectin-s, the neuronal variant (intersectin-l) also has Dbl homology (DH), pleckstrin homology (PH) and C2 domains. We now show that intersectin-l functions through its DH domain as a guanine nucleotide exchange factor (GEF) for Cdc42. In cultured cells, expression of DH-domain-containing constructs cause actin rearrangements specific for Cdc42 activation. Moreover, in vivo studies reveal that stimulation of Cdc42 by intersectin-l accelerates actin assembly via N-WASP and the Arp2/3 complex. N-WASP binds directly to intersectin-l and upregulates its GEF activity, thereby generating GTP-bound Cdc42, a critical activator of N-WASP. These studies reveal a role for intersectin-l in a novel mechanism of N-WASP activation and in regulation of the actin cytoskeleton.


Nature Genetics | 2012

Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma

Sergey Igorievich Nikolaev; Donata Rimoldi; Christian Iseli; Armand Valsesia; Daniel Robyr; Corinne Gehrig; Keith Harshman; Michel Guipponi; Olesya Bukach; Vincent Zoete; Olivier Michielin; Katja Muehlethaler; Daniel E. Speiser; Jacques S. Beckmann; Ioannis Xenarios; Thanos D. Halazonetis; C. Victor Jongeneel; Brian J. Stevenson

We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample–specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.


eLife | 2013

Passive and active DNA methylation and the interplay with genetic variation in gene regulation

Maria Gutierrez-Arcelus; Tuuli Lappalainen; Stephen B. Montgomery; Alfonso Buil; Halit Ongen; Alisa Yurovsky; Thomas Giger; Luciana Romano; Alexandra Planchon; Emilie Falconnet; Deborah Bielser; Maryline Gagnebin; Ismael Padioleau; Christelle Borel; A. Letourneau; Periklis Makrythanasis; Michel Guipponi; Corinne Gehrig; Emmanouil T. Dermitzakis

DNA methylation is an essential epigenetic mark whose role in gene regulation and its dependency on genomic sequence and environment are not fully understood. In this study we provide novel insights into the mechanistic relationships between genetic variation, DNA methylation and transcriptome sequencing data in three different cell-types of the GenCord human population cohort. We find that the association between DNA methylation and gene expression variation among individuals are likely due to different mechanisms from those establishing methylation-expression patterns during differentiation. Furthermore, cell-type differential DNA methylation may delineate a platform in which local inter-individual changes may respond to or act in gene regulation. We show that unlike genetic regulatory variation, DNA methylation alone does not significantly drive allele specific expression. Finally, inferred mechanistic relationships using genetic variation as well as correlations with TF abundance reveal both a passive and active role of DNA methylation to regulatory interactions influencing gene expression. DOI: http://dx.doi.org/10.7554/eLife.00523.001


Nature Genetics | 2001

Insertion of β-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness

Hamish S. Scott; Jun Kudoh; Marie Wattenhofer; Kazunori Shibuya; Asher Berry; Roman Chrast; Michel Guipponi; Jun Wang; Kazuhiko Kawasaki; Shuichi Asakawa; Shinsei Minoshima; Farah Younus; S. Qasim Mehdi; Uppala Radhakrishna; Marie Pierre Papasavvas; Corinne Gehrig; Colette Rossier; Michael Korostishevsky; Andreas Gal; Nobuyoshi Shimizu; Batsheva Bonne-Tamir

Approximately 50% of childhood deafness is caused by mutations in specific genes. Autosomal recessive loci account for approximately 80% of nonsyndromic genetic deafness. Here we report the identification of a new transmembrane serine protease (TMPRSS3; also known as ECHOS1) expressed in many tissues, including fetal cochlea, which is mutated in the families used to describe both the DFNB10 and DFNB8 loci. An 8-bp deletion and insertion of 18 monomeric (∼68-bp) β-satellite repeat units, normally present in tandem arrays of up to several hundred kilobases on the short arms of acrocentric chromosomes, causes congenital deafness (DFNB10). A mutation in a splice-acceptor site, resulting in a 4-bp insertion in the mRNA and a frameshift, was detected in childhood onset deafness (DFNB8). This is the first description of β-satellite insertion into an active gene resulting in a pathogenic state, and the first description of a protease involved in hearing loss.


American Journal of Psychiatry | 2009

Prevalence and Heritability of Compulsive Hoarding: A Twin Study

Alessandra C. Iervolino; Nader Perroud; Miguel A. Fullana; Michel Guipponi; Lynn Cherkas; David A. Collier; David Mataix-Cols

OBJECTIVE Compulsive hoarding is a serious health problem for the sufferers, their families, and the community at large. It appears to be highly prevalent and to run in families. However, this familiality could be due to genetic or environmental factors. This study examined the prevalence and heritability of compulsive hoarding in a large sample of twins. METHOD A total of 5,022 twins completed a validated measure of compulsive hoarding. The prevalence of severe hoarding was determined using empirically derived cutoffs. Genetic and environmental influences on compulsive hoarding were estimated using liability threshold models, and maximum-likelihood univariate model-fitting analyses were employed to decompose the variance in the liability to compulsive hoarding into additive genetic and shared and nonshared environmental factors (female twins only; N=4,355). RESULTS A total of 2.3% of twins met criteria for caseness, with significantly higher rates observed for male (4.1%) than for female (2.1%) twins. Model-fitting analyses in female twins showed that genetic factors accounted for approximately 50% of the variance in compulsive hoarding, with nonshared environmental factors and measurement error accounting for the other half. CONCLUSIONS Compulsive hoarding is highly prevalent and heritable, at least in women, with nonshared environmental factors also likely to play an important role.


American Journal of Human Genetics | 1999

Identification of a New Locus for Generalized Epilepsy with Febrile Seizures Plus (GEFS+) on Chromosome 2q24-q33

Bruno Moulard; Michel Guipponi; Denys Chaigne; Dominique Mouthon; Catherine Buresi; Alain Malafosse

We report the identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+). Six family members manifested isolated typical febrile seizures (FS), and five had typical FS associated with generalized epilepsy (FS+, generalized tonic/clonic seizures). Afebrile seizures occurred from childhood until the teenage years. The maximum two-point LOD score was 3.99 for markers D2S294 and D2S2314. Flanking markers place the GEFS+ locus between D2S141 and D2S116, with multipoint analysis favoring the 13-cM interval spanned by D2S294 and D2S364. This locus is the second GEFS+ locus to be reported, which suggests that this syndrome is genetically heterogeneous.


Nature | 2014

Domains of genome-wide gene expression dysregulation in Down’s syndrome

A. Letourneau; Federico Santoni; Ximena Bonilla; M. Reza Sailani; David Gonzalez; Jop Kind; Claire Chevalier; Robert E. Thurman; Richard Sandstrom; Youssef Hibaoui; Marco Garieri; Konstantin Popadin; Emilie Falconnet; Maryline Gagnebin; Corinne Gehrig; Anne Vannier; Michel Guipponi; Laurent Farinelli; Daniel Robyr; Eugenia Migliavacca; Christelle Borel; Samuel Deutsch; Anis Feki; John A. Stamatoyannopoulos; Yann Herault; Bas van Steensel; Roderic Guigó

Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins’ fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down’s syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.


Human Genetics | 2002

Identification of additional transcripts in the Williams-Beuren syndrome critical region

Giuseppe Merla; Catherine Ucla; Michel Guipponi; Alexandre Reymond

Abstract. Williams-Beuren syndrome (WBS) is a developmental disorder associated with haploinsufficiency of multiple genes at 7q11.23. Here, we report the characterization of WBSCR16, WBSCR17, WBSCR18, WBSCR20A, WBSCR20B, WBSCR20C, WBSCR21, WBSCR22, and WBSCR23, nine novel genes contained in the WBS commonly deleted region or its flanking sequences. They encode an RCC1-like G-exchanging factor, an N-acetylgalactosaminyltransferase, a DNAJ-like chaperone, NOL1/NOP2/sun domain-containing proteins, a methyltransferase, or proteins with no known homologies. Haploinsufficiency of these newly identified WBSCR genes may contribute to certain of the WBS phenotypical features.

Collaboration


Dive into the Michel Guipponi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamish S. Scott

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge