Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel Lapier is active.

Publication


Featured researches published by Michel Lapier.


Bioorganic & Medicinal Chemistry Letters | 2012

Antitrypanosomal and antioxidant properties of 4-hydroxycoumarins derivatives.

Fernanda Pérez-Cruz; Silvia Serra; Giovanna Delogu; Michel Lapier; Juan Diego Maya; Claudio Olea-Azar; Lourdes Santana; Eugenio Uriarte

In the present communication we prepared a series of six 4-hydroxycoumarin derivatives, isosters of quercetin, recognized as an antioxidant natural compound, with the aim of evaluating the antitrypanosomal activity against Trypanosoma cruzi, the parasite responsible for Chagas disease, and the antioxidant properties. We have used the 4-hydroxycoumarin moiety (compound 1) as the molecular template for the synthesis of compounds 2-7. These derivates have shown moderate trypanocidal activity. However they have been proved to be good antioxidants. In particular compound 7 is the most active antioxidant and it is, therefore, a potential candidate for a successful employment in conditions characterized by free radicals overproduction.


MedChemComm | 2013

Synthesis of coumarin–chalcone hybrids and evaluation of their antioxidant and trypanocidal properties

Saleta Vazquez-Rodriguez; Roberto Figueroa-Guíñez; Maria João Matos; Lourdes Santana; Eugenio Uriarte; Michel Lapier; Juan Diego Maya; Claudio Olea-Azar

Based on the observed biological activities of coumarins and chalcones, we have synthesized coumarin–chalcone hybrids with the aim of evaluating their antioxidant properties and trypanocidal activity against Trypanosoma cruzi, the parasite responsible for Chagas disease. All derivatives have been proved to be good antioxidants in spite of their moderate trypanocidal activity in the epimastigote stage (clone Dm28c). Based on these results, we can conclude that compounds 4 and 5 are potential candidates for in vitro studies of their antioxidant activity. These preliminary findings encourage us to the future structural optimization of these kinds of compounds.


Acta Tropica | 2013

Benznidazole prevents endothelial damage in an experimental model of Chagas disease.

Alfredo Molina-Berríos; Carolina Campos-Estrada; Michel Lapier; Juan Duaso; Ulrike Kemmerling; Norbel Galanti; Mario Leiva; Jorge Ferreira; Rodrigo López-Muñoz; Juan Diego Maya

OBJECTIVES To evaluate the effect of benznidazole on endothelial activation in a murine model of Chagas disease. METHODS A low (30mg/kg/day) and a high (100mg/kg/day) dose of benznidazole were administered to mice infected with Trypanosoma cruzi during the early phases of the infection. The effects of the treatments were assessed at 24 and 90 days postinfection by evaluating the parasitaemia, mortality, histopathological changes and expression of ICAM in the cardiac tissue. The blood levels of thromboxane A2, soluble ICAM and E-selectin were also measured. T. cruzi clearance was assessed by the detection of parasite DNA in the heart tissue of infected mice. RESULTS Benznidazole decreased the cardiac damage induced by the parasite, and amastigote nests disappeared at 90 days postinfection. Both doses cleared the parasite from the cardiac tissue at 24 and 90 days postinfection. In addition, benznidazole decreased the thromboxane levels and normalized the plasma sICAM and sE-selectin levels by 90 days postinfection. CONCLUSIONS Early administration of benznidazole at a dose as low as 30mg/kg eradicates T. cruzi from cardiac tissue. Additionally, benznidazole prevents cardiac damage and modulates endothelial activation as part of its antichagasic activity.


Toxicology and Applied Pharmacology | 2013

An ortho-carbonyl substituted hydroquinone derivative is an anticancer agent that acts by inhibiting mitochondrial bioenergetics and by inducing G2/M-phase arrest in mammary adenocarcinoma TA3

Félix A. Urra; Maximiliano Martínez-Cifuentes; Mario Pavani; Michel Lapier; Fabián Jaña-Prado; Eduardo Parra; Juan Diego Maya; Hernán Pessoa-Mahana; Jorge Ferreira; Ramiro Araya-Maturana

Tumor cells present a known metabolic reprogramming, which makes them more susceptible for a selective cellular death by modifying its mitochondrial bioenergetics. Anticancer action of the antioxidant 9,10-dihydroxy-4,4-dimethyl-5,8-dihydroanthracen-1(4H)-one (HQ) on mouse mammary adenocarcinoma TA3, and its multiresistant variant TA3-MTXR, were evaluated. HQ decreased the viability of both tumor cells, affecting slightly mammary epithelial cells. This hydroquinone blocked the electron flow through the NADH dehydrogenase (Complex I), leading to ADP-stimulated oxygen consumption inhibition, transmembrane potential dissipation and cellular ATP level decrease, without increasing ROS production. Duroquinol, an electron donor at CoQ level, reversed the decrease of cell viability induced by HQ. Additionally, HQ selectively induced G₂/M-phase arrest. Taken together, our results suggest that the bioenergetic dysfunction provoked by HQ is implicated in its anticancer action.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011

ESR, electrochemical, molecular modeling and biological evaluation of 4-substituted and 1,4-disubstituted 7-nitroquinoxalin-2-ones as potential anti-Trypanosoma cruzi agents

Benjamín Aguilera-Venegas; Claudio Olea-Azar; Ester Norambuena; Vicente J. Arán; Fernando Mendizabal; Michel Lapier; Juan Diego Maya; Ulrike Kemmerling; Rodrigo López-Muñoz

Electrochemical and ESR studies were carried out in this work with the aim of characterizing the reduction mechanisms of 4-substituted and 1,4-disubstituted 7-nitroquinoxalin-2-ones by means of cyclic voltammetry in DMSO as aprotic solvent. Two reduction mechanisms were found for these compounds: the first, for compounds bearing a labile hydrogen by following a self-protonation mechanism (ECE steps), and the second, for compounds without labile hydrogen, based on a purely electrochemical reduction mechanism (typical of nitroheterocycles). The electrochemical results were corroborated using ESR spectroscopy allowing us to propose the hyperfine splitting pattern of the nitro-radical, which was later corroborated by the ESR simulation spectra. All these compounds were assayed as growth inhibitors against Trypanosoma cruzi: first, on the non-proliferative (and infective) form of the parasite (trypomastigote stage), and then, the ones that displayed activity, were assayed on the non-infective form (epimastigote stage). Thus, we found four new compounds highly active against T. cruzi. Finally, molecular modeling studies suggest the inhibition of the trypanothione reductase like one of the possible mechanisms involved in the trypanocidal action.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012

Biological and chemical study of fused tri- and tetracyclic indazoles and analogues with important antiparasitic activity

Christian Diaz-Urrutia; Claudio Olea-Azar; Gerald A. Zapata; Michel Lapier; Francisco Mura; Benjamín Aguilera-Venegas; Vicente J. Arán; Rodrigo López-Muñoz; Juan Diego Maya

A series of fused tri- and tetracyclic indazoles and analogues compounds (NID) with potential antiparasitic effects were studied using voltamperometric and spectroscopic techniques. Nitroanion radicals generated by cyclic voltammetry were characterized by electron spin resonance spectroscopy (ESR) and their spectral lines were explained and analyzed using simulated spectra. In addition, we examined the interaction between radical species generated from nitroindazole derivatives and glutathione (GSH). Biological assays such as activity against Trypanosoma cruzi and cytotoxicity against macrophages were carried out. Finally, spin trapping and molecular modeling studies were also done in order to elucidate the potentials action mechanisms involved in the trypanocidal activity.


Bioorganic & Medicinal Chemistry | 2017

Synthesis, antioxidant and antichagasic properties of a selected series of hydroxy-3-arylcoumarins

Natalia Robledo-O’Ryan; Maria João Matos; Saleta Vazquez-Rodriguez; Lourdes Santana; Eugenio Uriarte; Mauricio Moncada-Basualto; Francisco Mura; Michel Lapier; Juan Diego Maya; Claudio Olea-Azar

Oxidative stress is involved in several parasitic diseases such as Chagas. Agents able to selectively modulate biochemical processes involved in the disease represent promising multifunctional agents for the delay or abolishment of the progression of this pathology. In the current work, differently substituted hydroxy-3-arylcoumarins are described, exerting both antioxidant and trypanocidal activity. Among the compounds synthesized, compound 8 showed the most interesting profile, presenting a moderate scavenging ability for peroxyl radicals (ORAC-FL=2.23) and a high degree of selectivity towards epimastigotes stage of the parasite T. cruzi (IC50=1.31μM), higher than Nifurtimox (drug currently used for treatment of Chagas disease). Interestingly, the current study revealed that small structural changes in the hydroxy-3-arylcoumarin core allow modulating both activities, suggesting that this scaffold has desirable properties for the development of promising classes of antichagasic compounds.


PLOS Neglected Tropical Diseases | 2015

Simvastatin and Benznidazole-Mediated Prevention of Trypanosoma cruzi-Induced Endothelial Activation: Role of 15-epi-lipoxin A4 in the Action of Simvastatin.

Carolina Campos-Estrada; Ana Liempi; Fabiola González-Herrera; Michel Lapier; Ulrike Kemmerling; Bárbara Pesce; Jorge Ferreira; Rodrigo López-Muñoz; Juan Diego Maya

Trypanosoma cruzi is the causal agent of Chagas Disease that is endemic in Latin American, afflicting more than ten million people approximately. This disease has two phases, acute and chronic. The acute phase is often asymptomatic, but with time it progresses to the chronic phase, affecting the heart and gastrointestinal tract and can be lethal. Chronic Chagas cardiomyopathy involves an inflammatory vasculopathy. Endothelial activation during Chagas disease entails the expression of cell adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) through a mechanism involving NF-κB activation. Currently, specific trypanocidal therapy remains on benznidazole, although new triazole derivatives are promising. A novel strategy is proposed that aims at some pathophysiological processes to facilitate current antiparasitic therapy, decreasing treatment length or doses and slowing disease progress. Simvastatin has anti-inflammatory actions, including improvement of endothelial function, by inducing a novel pro-resolving lipid, the 5-lypoxygenase derivative 15-epi-lipoxin A4 (15-epi-LXA4), which belongs to aspirin-triggered lipoxins. Herein, we propose modifying endothelial activation with simvastatin or benznidazole and evaluate the pathways involved, including induction of 15-epi-LXA4. The effect of 5 μM simvastatin or 20 μM benznidazole upon endothelial activation was assessed in EA.hy926 or HUVEC cells, by E-selectin, ICAM-1 and VCAM-1 expression. 15-epi-LXA4 production and the relationship of both drugs with the NFκB pathway, as measured by IKK-IKB phosphorylation and nuclear migration of p65 protein was also assayed. Both drugs were administered to cell cultures 16 hours before the infection with T. cruzi parasites. Indeed, 5 μM simvastatin as well as 20 μM benznidazole prevented the increase in E-selectin, ICAM-1 and VCAM-1 expression in T. cruzi-infected endothelial cells by decreasing the NF-κB pathway. In conclusion, Simvastatin and benznidazole prevent endothelial activation induced by T. cruzi infection, and the effect of simvastatin is mediated by the inhibition of the NFκB pathway by inducing 15-epi-LXA4 production.


Toxicology and Applied Pharmacology | 2013

Tumor cell death induced by the inhibition of mitochondrial electron transport: The effect of 3-hydroxybakuchiol

Fabián Jaña; Francesca Faini; Michel Lapier; Mario Pavani; Ulrike Kemmerling; Antonio Morello; Juan Diego Maya; José A. Jara; Eduardo Parra; Jorge Ferreira

Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line and induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013

Host–guest interaction between new nitrooxoisoaporphine and β-cyclodextrins: Synthesis, electrochemical, electron spin resonance and molecular modeling studies

Fernanda Pérez-Cruz; Benjamín Aguilera-Venegas; Michel Lapier; Eduardo Sobarzo-Sánchez; Eugenio Uriarte Villares; Claudio Olea-Azar

A new nitrooxoisoaporphine derivative was synthetized and characterized by cyclic voltammetry and electron spin resonance. Its aqueous solubility was improved by complexes formation with β-cyclodextrin, heptakis(2,6-di-O-methyl)-β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin. In order to assess the inclusion degree reached by nitrooxoisoaporphine in cyclodextris cavity, the stability constants of formation of the complexes were determined by phase-solubility measurements obtaining in all cases a type-A(L) diagram. Moreover, electrochemical studies were carried out, where the observed change in the EPC value indicated a lower feasibility of the nitro group reduction. Additionally, a detailed spatial configuration is proposed for inclusion of derivate within the cyclodextrins cavity by 2D NMR techniques. Finally, these results are further interpreted by means of molecular modeling studies. Thus, theoretical results are in complete agreement with the experimental data.

Collaboration


Dive into the Michel Lapier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugenio Uriarte

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Lourdes Santana

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge