Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel Linder is active.

Publication


Featured researches published by Michel Linder.


Critical Reviews in Food Science and Nutrition | 2010

Active Food Packaging Evolution: Transformation from Micro- to Nanotechnology

Muhammad Imran; Anne-Marie Revol-Junelles; Agnieszka Martyn; Elmira Arab Tehrany; Muriel Jacquot; Michel Linder; Stéphane Desobry

Predicting which attributes consumers are willing to pay extra for has become straightforward in recent years. The demands for the prime necessity of food of natural quality, elevated safety, minimally processed, ready-to-eat, and longer shelf-life have turned out to be matters of paramount importance. The increased awareness of environmental conservation and the escalating rate of foodborne illnesses have driven the food industry to implement a more innovative solution, i.e. bioactive packaging. Owing to nanotechnology application in eco-favorable coatings and encapsulation systems, the probabilities of enhancing food quality, safety, stability, and efficiency have been augmented. In this review article, the collective results highlight the food nanotechnology potentials with special focus on its application in active packaging, novel nano- and microencapsulation techniques, regulatory issues, and socio-ethical scepticism between nano-technophiles and nano-technophobes. No one has yet indicated the comparison of data concerning food nano- versus micro-technology; therefore noteworthy results of recent investigations are interpreted in the context of bioactive packaging. The next technological revolution in the domain of food science and nutrition would be the 3-BIOS concept enabling a controlled release of active agents through bioactive, biodegradable, and bionanocomposite combined strategy.


International Journal of Pharmaceutics | 2014

Liposome encapsulation of curcumin: Physico-chemical characterizations and effects on MCF7 cancer cell proliferation

Mohamed Hasan; Nabila Belhaj; Hamanou Benachour; Muriel Barberi-Heyob; Cyril J.F. Kahn; Esmaiel Jabbari; Michel Linder; Elmira Arab-Tehrany

The role of curcumin (diferuloylmethane), for cancer treatment has been an area of growing interest. However, due to its low absorption, the poor bioavailability of curcumin limits its clinical use. In this study, we reported an approach of encapsulation a curcumin by nanoliposome to achieve an improved bioavailability of a poorly absorbed hydrophobic compound. We demonstrated that liposomal preparations to deliver curcumin increase its bioavailability. Liposomes composed of salmons lecithin also improved curcumin bioavailability compared to those constituted of rapeseed and soya lecithins. A real-time label-free cell analysis system based on real-time cell impedance monitoring was used to investigate the in vitro cytotoxicity of liposomal preparations.


Food Chemistry | 2012

Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant l-carnosine

Behnoush Maherani; Elmira Arab-Tehrany; Azadeh Kheirolomoom; Franck Cleymand; Michel Linder

Natural dipeptide antioxidants (l-carnosine) are recieving increasing attention because of their noticeable potential as biopreservatives in food recent technology. Encapsulation of antioxidants by nanoliposomes could represent an ameliorative approach to overcome the problems related to the direct application of these antioxidant peptides in food. In this study, nanoliposomes prepared from different lipids (DOPC, POPC and DPPC) by thin film hydration method, were assessed by considering their size, ζ-potential, phase transition temperature and fluidity. One important parameter of interest in this article was to compare the encapsulation efficacy of l-carnosine in three different nanoliposomes using a rapid and precise approach (1)H NMR without the need for physical separation of entrapped and non-entrapped l-carnosine. Furthermore, the morphology of small unilamellar nanoliposomes with different compositions on mica surface was investigated using Atomic Force Microscopy.


European Journal of Pharmaceutical Sciences | 2012

Formulation, characterization and pharmacokinetic studies of coenzyme Q10 PUFA’s nanoemulsions

Nabila Belhaj; François Dupuis; Elmira Arab-Tehrany; Frédéric M. Denis; Cédric Paris; Isabelle Lartaud; Michel Linder

Coenzyme Q(10) (CoQ(10)) is an insoluble antioxidant molecule with great biological value but exhibit poor bioavailability. To improve the bioavailability of CoQ(10), we have proposed to formulate a nanoemulsion consisting of salmon oil, salmon lecithin, CoQ(10) and water. A commercial oily mixture, based on soybean oil and CoQ(10), was used for comparison, as well as a second oily mixture, composed of salmon lecithin, salmon oil and CoQ(10). Salmon oil and salmon lecithin were used as sources of polyunsaturated fatty acids (PUFA). The maximum solubility of CoQ(10) in salmon oil was 81.30 ± 0.08 mg/mL at 37 °C. Mean droplets size of the control and CoQ(10) nanoemulsions was 164 and 167 nm, respectively. The nanoemulsion was stable during 30 days at 25 °C. Bioavailability was evaluated as the area under the curve of CoQ(10) plasma concentration in male Wistar rats following oral administration of the three formulations of CoQ(10). The nanoemulsion increases at twice the bioavailability of CoQ(10) than conventional oily formulations regardless the nature of used fatty acids (soybean and salmon oils). Prepared nanoemulsion represents a vectorization of both LC-PUFAs and CoQ(10). That could be an interesting way to increase the absorption of these two bioactive molecules with natural low availability.


Journal of Nanobiotechnology | 2011

Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3.

Tin-hinan Kabri; Elmira Arab-Tehrany; Nabila Belhaj; Michel Linder

BackgroundNano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability.ResultsBoth tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB.ConclusionsThis study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design.


Colloids and Surfaces B: Biointerfaces | 2012

Elaboration and characterization of nanoliposome made of soya; rapeseed and salmon lecithins: application to cell culture.

Elmira Arab Tehrany; Cyril J.F. Kahn; Christophe Baravian; Behnoush Maherani; Nabila Belhaj; Xiong Wang; Michel Linder

Health benefits of unsaturated fatty acids have been demonstrated over the last decades. Nanotechnology provided new process to produce particles such as liposomes and nanoliposomes made of pure phospholipids. These techniques are already used in pharmaceutics to augment the bioavailability and the bioefficiency of drugs. The aim of this paper is to characterize and evaluate the potential of nanoliposomes made of three lecithins (soya, rapeseed and salmon) on cell culture in order to use them in the future as drug delivery systems for tissue engineering. We began to measure, with zetasizer, the radius size of liposomes particles which are 125.5, 136.7 and 130.3 nm respectively for rapeseed, soya and salmon lecithin. Simultaneously, solutions observed by TEM demonstrated the particles were made much of liposomes than droplet (emulsion). Finally, we found that the solutions of lecithins were enough stable over 5 days at 37 °C to be used in culture medium. We investigated the effect of soya, rapeseed and salmon lecithin liposome from 2mg/mL to 5.2 μg/mL on metabolic activity and cell proliferation on rat bone marrow stem cells (rBMSC) during 14 days. The results showed that the three lecithins (soya, rapeseed and salmon) improve cell proliferation at different concentration.


RSC Advances | 2016

Chitosan-coated liposomes encapsulating curcumin: study of lipid–polysaccharide interactions and nanovesicle behavior

Mahmoud Hasan; G. Ben Messaoud; Florentin Michaux; Ali Tamayol; Cyril J.F. Kahn; Nabila Belhaj; Michel Linder; Elmira Arab-Tehrany

Despite various spectacular therapeutic properties, curcumin has low bioavailability mainly due to its poor solubility in water. In this paper, we encapsulated curcumin by nanoliposomes prepared from salmon purified phospholipid and coated with chitosan. Various techniques were used in order to study the interactions among phospholipid, chitosan and curcumin. FTIR results showed both electrostatic and hydrophobic interactions as well as hydrogen bonding between chitosan and phospholipid, while hydrophobic forces and hydrogen bonding dominated the interactions between curcumin and phospholipid as well as between curcumin and chitosan. Shear viscosity measurements demonstrated a flow behavior change from Newtonian to shear thinning after liposome coating. The increase/decrease stress ramp showed that the addition of chitosan layer decreased significantly the hysteresis loop area (thixotropic behavior) and therefore increased significantly the liposomal dispersion stability. The viscoelastic properties investigated by small-amplitude oscillatory shear rheology demonstrated improvement of mechanical stability after chitosan addition. Small-angle X-ray scattering experiments revealed that the liposome membrane structure was not affected by the chitosan layer or the encapsulated curcumin.


Current Drug Targets | 2011

Mechanism of Bioactive Transfer through Liposomal Bilayers

Behnoush Maherani; Elmira Arab-Tehrany; Michel Linder

Today, liposomes are one of the most effective carriers systems employed in biological, pharmaceutical, medical and nutritional research. In order to optimize a liposomal formulation for the encapsulation, delivery and release of the entrapped material, it is necessary to study material passage through the lipidic and aqueous phases of the lipid vesicle. Towards this end, this article aims to review the mechanisms of bioactive transfer between different layers of a liposome and it also discusses about the bioactive release mechanism. Several methods of detection and observation of bioactive transfer in liposomal systems are presented.


Colloids and Surfaces B: Biointerfaces | 2014

Influence of lecithin–lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule

Lynda Bouarab; Behnoush Maherani; Azadeh Kheirolomoom; Mahmoud Hasan; Bahar Aliakbarian; Michel Linder; Elmira Arab-Tehrany

In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature.


Carbohydrate Polymers | 2013

Effects of Ar―H2―N2 microwave plasma on chitosan and its nanoliposomes blend thin films designed for tissue engineering applications

H.Y. Zhang; F. Cleymand; C. Noël; Cyril J.F. Kahn; Michel Linder; A. Dahoun; Gérard Henrion; Elmira Arab-Tehrany

This work addresses the functionalization of chitosan thin films and its nanoliposomes blend films by a microwave-excited Ar/N2/H2 surface-wave plasma treatment which was found an effective tool to modify surface properties. Changes in the film properties (wettability, chemical composition, morphology) induced by the plasma treatment are studied using water contact angle measurements, X-ray photoelectron spectroscopy and scanning probe microscopy. The results suggest that hydrophilicity of the films is improved by plasma treatment in a plasma condition dependency manner. Water contact angle of chitosan films before and after plasma treatment are, respectively, 101° and 27°. Besides chemical changes on the surface, the nanoliposomes incorporation and plasma treatment also induce morphological modifications. Moreover, a correlation is found between the nanoliposomes composition and size, and the effects of plasma treatment. It is shown that the plasma treatment significantly improves the chitosan film functionalization. The effect of N2 content (88% and 100%) in the plasma gas mixture on the film etching is also pointed out.

Collaboration


Dive into the Michel Linder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Villeneuve

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge