Michel Ramonet
Université Paris-Saclay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michel Ramonet.
Science | 2007
Corinne Le Quéré; Christian Rödenbeck; Erik T. Buitenhuis; T. J. Conway; R. L. Langenfelds; Antony Gomez; Casper Labuschagne; Michel Ramonet; Takakiyo Nakazawa; Nicolas Metzl; Nathan P. Gillett; Martin Heimann
Based on observed atmospheric carbon dioxide (CO2) concentration and an inverse method, we estimate that the Southern Ocean sink of CO2 has weakened between 1981 and 2004 by 0.08 petagrams of carbon per year per decade relative to the trend expected from the large increase in atmospheric CO2. We attribute this weakening to the observed increase in Southern Ocean winds resulting from human activities, which is projected to continue in the future. Consequences include a reduction of the efficiency of the Southern Ocean sink of CO2 in the short term (about 25 years) and possibly a higher level of stabilization of atmospheric CO2 on a multicentury time scale.
Science | 2007
Britton B. Stephens; Kevin Robert Gurney; Pieter P. Tans; Colm Sweeney; Wouter Peters; Lori Bruhwiler; Philippe Ciais; Michel Ramonet; P. Bousquet; Takakiyo Nakazawa; Shuji Aoki; Toshinobu Machida; Gen Inoue; Nikolay Vinnichenko; Jon Lloyd; Armin Jordan; Martin Heimann; Olga Shibistova; R. L. Langenfelds; L. Paul Steele; R. J. Francey; A. Scott Denning
Measurements of midday vertical atmospheric CO2 distributions reveal annual-mean vertical CO2 gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial carbon from tropical to northern latitudes. The three models that most closely reproduce the observed annual-mean vertical CO2 gradients estimate weaker northern uptake of –1.5 petagrams of carbon per year (Pg C year–1) and weaker tropical emission of +0.1 Pg C year–1 compared with previous consensus estimates of –2.4 and +1.8 Pg C year–1, respectively. This suggests that northern terrestrial uptake of industrial CO2 emissions plays a smaller role than previously thought and that, after subtracting land-use emissions, tropical ecosystems may currently be strong sinks for CO2.
Journal of Geophysical Research | 1997
Daniel J. Jacob; Michael J. Prather; Philip J. Rasch; Run-Lie Shia; Yves Balkanski; S. R. Beagley; D. Bergmann; W. T. Blackshear; Margaret Brown; Masaru Chiba; M. P. Chipperfield; J. de Grandpré; Jane Dignon; Johann Feichter; Christophe Genthon; William L. Grose; Prasad S. Kasibhatla; Ines Köhler; Mark A. Kritz; Kathy S. Law; Joyce E. Penner; Michel Ramonet; C. E. Reeves; Douglas A. Rotman; Deianeira Z. Stockwell; Peter F. J. van Velthoven; Gé Verver; Oliver Wild; Hu Yang; Peter H. Zimmermann
Simulations of 222Rn and other short-lived tracers are used to evaluate and intercompare the representations of convective and synoptic processes in 20 global atmospheric transport models. Results show that most established three-dimensional models simulate vertical mixing in the troposphere to within the constraints offered by the observed mean 222Rn concentrations and that subgrid parameterization of convection is essential for this purpose. However, none of the models captures the observed variability of 222Rn concentrations in the upper troposphere, and none reproduces the high 222Rn concentrations measured at 200 hPa over Hawaii. The established three-dimensional models reproduce the frequency and magnitude of high-222Rn episodes observed at Crozet Island in the Indian Ocean, demonstrating that they can resolve the synoptic-scale transport of continental plumes with no significant numerical diffusion. Large differences between models are found in the rates of meridional transport in the upper troposphere (interhemispheric exchange, exchange between tropics and high latitudes). The four two-dimensional models which participated in the intercomparison tend to underestimate the rate of vertical transport from the lower to the upper troposphere but show concentrations of 222Rn in the lower troposphere that are comparable to the zonal mean values in the three-dimensional models.
Global Biogeochemical Cycles | 1996
Robert Law; P. J. Rayner; A. S. Denning; D. Erickson; Inez Y. Fung; Martin Heimann; Stephen C. Piper; Michel Ramonet; Shoichi Taguchi; J. A. Taylor; Cathy M. Trudinger; I. G. Watterson
Carbon dioxide concentrations due to fossil fuel burning and CO 2 exchange with the terrestrial biosphere have been modeled with 12 different three-dimensional atmospheric transport models. The models include both on-line and off-line types and use a variety of advection algorithms and subgrid scale parameterizations. A range of model resolutions is also represented. The modeled distributions show a large range of responses. For the experiment using the fossil fuel source, the annual mean meridional gradient at the surface vases by a factor of 2. This suggests a factor of 2 variation in the efficiency of surface interhemispheric exchange as much due to differences in model vertical transport as to horizontal differences. In the upper troposphere, zonal mean gradients within the northern hemisphere vary in sign. In the terrestrial biotic source experiment, the spatial distribution of the amplitude and the phase of the seasonal cycle of surface CO 2 concentration vary little between models. However, the magnitude of the amplitudes varies similarly to the fossil case. Differences between modeled and observed seasonal cycles in the northern extratropics suggest that the terrestrial biotic source is overestimated in late spring and underestimated in winter. The annual mean response to the seasonal source also shows large differences in magnitude. The uncertainty in hemispheric carbon budgets implied by the differences in interhemispheric exchange times is comparable to those quoted by the Intergovernmental Panel on Climate Change for fossil fuel and ocean uptake and smaller than those for terrestrial fluxes. We outline approaches which may reduce this component in CO 2 budget uncertainties.
Journal of Geophysical Research | 2010
P. Bergamaschi; M. Krol; Jan Fokke Meirink; F. Dentener; Arjo Segers; J. van Aardenne; Suvi Monni; Alex Vermeulen; Martina Schmidt; Michel Ramonet; C. Yver; F. Meinhardt; Euan G. Nisbet; R. E. Fisher; Simon O'Doherty; E. J. Dlugokencky
European CH4 emissions are estimated for the period 2001-2006 using a four-dimensional variational (4DVAR) inverse modeling system, based on the atmospheric zoom model TM5. Continuous observations are used from various European monitoring stations, complemented by European and global flask samples from the NOAA/ESRL network. The available observations mainly provide information on the emissions from northwest Europe (NWE), including the UK, Ireland, the BENELUX countries, France and Germany. The inverse modeling estimates for the total anthropogenic emissions from NWE are 21% higher compared to the EDGARv4.0 emission inventory and 40% higher than values reported to U.N. Framework Convention on Climate Change. Assuming overall uncertainties on the order of 30% for both bottom-up and top-down estimates, all three estimates can be still considered to be consistent with each other. However, the uncertainties in the uncertainty estimates prevent us from verifying (or falsifying) the bottom-up inventories in a strict sense. Sensitivity studies show some dependence of the derived spatial emission patterns on the set of atmospheric monitoring stations used, but the total emissions for the NWE countries appear to be relatively robust. While the standard inversions include a priori information on the spatial and temporal emission patterns from bottom-up inventories, a further sensitivity inversion without this a priori information results in very similar NWE country totals, demonstrating that the available observations provide significant constraints on the emissions from the NWE countries independent from bottom-up inventories.
Journal of Geophysical Research | 2000
Sebastien Biraud; Philippe Ciais; Michel Ramonet; Peter G. Simmonds; V. Kazan; Patrick Monfray; Simon O'Doherty; T. Gerard Spain; S. Gerard Jennings
Flux estimates of CO2, CH4, N2O, and CFCs over western Europe have been inferred from continuous atmospheric records of these species at the atmospheric research station of Mace Head, Ireland. We use radon (222Rn) which has a fairly uniform source over continents as a reference compound to estimate unknown sources of other species. The correlation between each species and 222Rn is calculated for a suite of synoptic events that have been selected in the Mace Head record over the period 1996/97. In the following, we describe the method and its uncertainties, and we establish data selection criteria that minimize the influence of local sources over Ireland, in the vicinity of the station, in order to select synoptic events originating from western Europe. We estimate western European flux densities of 45–30 103 kg C km−2 month−1 during wintertime for CO2, of 4.8–3.5 103 kg CH4 km−2 yr−1, 475–330 kg N2O km−2 yr−1, 2.5–1.8 kg CFC-11 km−2 yr−1 for CFC-11, and 4.2–2.9 kg CFC-12 km−2 yr−1 for CFC-12. Our estimates are independent, although in good agreement with those produced by inventories, except for CFC-11 where our estimate is much lower than the inventory.
Journal of Geophysical Research | 2011
Grégoire Broquet; F. Chevallier; P. J. Rayner; C. Aulagnier; I. Pison; Michel Ramonet; Martina Schmidt; Alex Vermeulen; Philippe Ciais
A regional variational inverse modeling system for the estimation of European biogenic CO2 fluxes is presented. This system is based on a 50 km horizontal resolution configuration of a mesoscale atmospheric transport model and on the adjoint of its tracer transport code. It exploits hourly CO2 in situ data from 15 CarboEurope-Integrated Project stations. Particular attention in the inversion setup is paid to characterizing the transport model error and to selecting the observations to be assimilated as a function of this error. Comparisons between simulations and data of CO2 and Rn-222 concentrations indicate that the model errors should have a standard deviation which is less than 7 ppm when simulating the hourly variability of CO2 at low altitude during the afternoon and evening or at high altitude at night. Synthetic data are used to estimate the uncertainty reduction for the fluxes using this inverse modeling system. The improvement brought by the inversion to the prior estimate of the fluxes for both the mean diurnal cycle and the monthly to synoptic variability in the fluxes and associated mixing ratios are checked against independent atmospheric data and eddy covariance flux measurements. Inverse modeling is conducted for summers 2002-2007 which should reduce the uncertainty in the biogenic fluxes by similar to 60% during this period. The trend in the mean flux corrections between June and September is to increase the uptake of CO2 by similar to 12 gCm(-2). Corrections at higher resolution are also diagnosed that reveal some limitations of the underlying prior model of the terrestrial biosphere. (Less)
Science | 2008
Corinne Le Quéré; Christian Rödenbeck; Erik T. Buitenhuis; T. J. Conway; R. L. Langenfelds; Antony Gomez; Casper Labuschagne; Michel Ramonet; Takakiyo Nakazawa; Nicolas Metzl; Nathan P. Gillett; Martin Heimann
We estimated a weakening of the Southern Ocean carbon dioxide (CO2) sink since 1981 relative to the trend expected from the large increase in atmospheric CO2. We agree with Law et al. that network choice increases the uncertainty of trend estimates but argue that their network of five locations is too small to be reliable. A future reversal of Southern Ocean CO2 saturation as suggested by Zickfeld et al. is possible, but only at high atmospheric CO2 concentrations, and the effect would be temporary.
Journal of Geophysical Research | 2009
F. Chevallier; Richard J. Engelen; C. Carouge; T. J. Conway; Philippe Peylin; Christopher Pickett-Heaps; Michel Ramonet; P. J. Rayner; I. Xueref-Remy
This paper demonstrates an inversion of surface CO2 fluxes using concentrations derived from assimilation of satellite radiances. Radiances come from the Atmospheric Infrared Sounder (AIRS) and are assimilated within the system of the European Centre for Medium-Range Weather Forecasts. We evaluate the quality of the inverted fluxes by comparing simulated concentrations with independent airborne measurements. As a benchmark we use an inversion based on surface flask measurements and another using only the global concentration trend. We show that the AIRS-based inversion is able to improve the match to the independent data compared to the prior estimate but that it usually performs worse than either the flask-based or trend-based inversion.
Tellus B | 2013
Sauveur Belviso; Martina Schmidt; C. Yver; Michel Ramonet; Valérie Gros; Thomas Launois
We investigated the diurnal variations of atmospheric carbonyl sulphide (COS) during 2011 at Gif-sur-Yvette, a suburban atmospheric measurement site in France. These data were collected semi-continuously in parallel with hydrogen (H2), carbon monoxide (CO) and 222Radon (222Rn) measurements. Fluxes and deposition velocities were calculated for nocturnal situations of low boundary layer height using the Radon-Tracer Method. Contrary to CO and H2, the diurnal cycles of COS are not impacted by emissions from nearby automobile traffic. In the absence of local anthropogenic combustion sources, COS and H2 mole fractions generally show similar temporal variations with night-time depletion coinciding with 222Rn accumulation during stable nocturnal conditions. Nocturnal COS deposition velocities range from 0.07 to 0.40 mm s−1, with an annual mean of 0.18±0.12 mm s−1 (n=14). We found strong similarities between COS and H2 dry deposition velocities in terms of annual mean and ranges of variation, and data showed linear correlation between the two. This study provides new evidence of the loss of COS near the ground via non-photosynthetic processes. Although the dominant sink of atmospheric H2 is diffusion and subsequent destruction in soils, it is not all certain that COS is taken up at night solely by soils.