Michel Saboureau
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michel Saboureau.
Current Biology | 2006
Florent G. Revel; Michel Saboureau; Mireille Masson-Pévet; Paul Pévet; Jens D. Mikkelsen; Valérie Simonneaux
The KiSS-1 gene encodes kisspeptin, the endogenous ligand of the G-protein-coupled receptor GPR54. Recent data indicate that the KiSS-1/GPR54 system is critical for the regulation of reproduction and is required for puberty onset. In seasonal breeders, reproduction is tightly controlled by photoperiod (i.e., day length). The Syrian hamster is a seasonal model in which reproductive activity is promoted by long summer days (LD) and inhibited by short winter days (SD). Using in situ hybridization and immunohistochemistry, we show that KiSS-1 is expressed in the arcuate nucleus of LD hamsters. Importantly, the KiSS-1 mRNA level was lower in SD animals but not in SD-refractory animals, which spontaneously reactivated their sexual activity after several months in SD. These changes of expression are not secondary to the photoperiodic variations of gonadal steroids. In contrast, melatonin appears to be necessary for these seasonal changes because pineal-gland ablation prevented the SD-induced downregulation of KiSS-1 expression. Remarkably, a chronic administration of kisspeptin-10 restored the testicular activity of SD hamsters despite persisting photoinhibitory conditions. Overall, these findings are consistent with a role of KiSS-1/GPR54 in the seasonal control of reproduction. We propose that photoperiod, via melatonin, modulates KiSS-1 signaling to drive the reproductive axis.
Reviews in Endocrine & Metabolic Disorders | 2007
Florent G. Revel; Laura Ansel; Paul Klosen; Michel Saboureau; Paul Pévet; Jens D. Mikkelsen; Valérie Simonneaux
In seasonal species, photoperiod (i.e. daylength) tightly regulates reproduction to ensure that birth occurs at the most favorable time of year. In mammals, a distinct photoneuroendocrine circuit controls this process via the pineal hormone melatonin. This hormone is responsible for the seasonal regulation of reproduction, but the anatomical substrate and the cellular mechanism through which melatonin modulates sexual activity is far from understood. The Syrian hamster is widely used to explore the photoneuroendocrine system, because it is a seasonal model in which sexual activity is promoted by long summer days (LD) and inhibited by short winter days (SD). Recent evidences indicate that the products of the KiSS-1 gene, kisspeptins, and their specific receptor GPR54, represent potent stimulators of the sexual axis. We have shown that melatonin impacts on KiSS-1 expression to control reproduction in the Syrian hamster. In this species, KiSS-1 is expressed in the antero-ventral-periventricular and arcuate nuclei of the hypothalamus at significantly higher levels in hamsters kept in LD as compared to SD. In the arcuate nucleus, the downregulation of KiSS-1 expression in SD appears to be mediated by melatonin and not by secondary changes in gonadal hormones. Remarkably, a chronic administration of kisspeptin restores testicular activity in SD hamsters, despite persisting photoinhibitory conditions. Overall, these findings are consistent with a role of KiSS-1/GPR54 in the seasonal control of reproduction. We propose that the photoperiod, via melatonin, modulates KiSS-1 neurons to drive the reproductive axis.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Ana Maria Magarinos; Bruce S. McEwen; Michel Saboureau; Paul Pévet
The hippocampal formation is a highly plastic brain structure that undergoes structural remodeling in response to internal and external challenges such as metabolic imbalance and repeated stress. We investigated whether the extreme alterations in metabolic status that occur during the course of hibernation in European hamsters cause structural changes in the dendritic arborizations of the CA3 pyramidal neurons and their main excitatory afferents, the mossy fiber terminals (MFT), that originate in the dentate gyrus. We report that apical, but not basal, dendritic trees of Golgi-impregnated CA3 principal neurons are significantly shorter, less branched, and less spiny in hypothermic hamsters compared with active animals. After the induction of arousal from torpor, within 2 h, the apical dendritic lengths, branching patterns, and spine density estimations returned to levels found in active, euthermic hamsters. The ultrastructure of MFT in hibernating hamsters showed a significant reduction in synaptic vesicle density and in the percentage of MFT area covered by spine profiles. Awakened hamsters showed restoration of MFT morphology to that seen in active animals. MFT of torpid animals also showed a significant increase in the percentage area of mitochondrial profiles that remained higher 3 h after induced arousal from hibernation compared with euthermic controls. Thus, the torpid/awakening cycle of the hibernating European hamster causes a rapid and reversible morphological reorganization of intrahippocampal subregions involved in information processing. The reported reductions in morphological connectivity between the dentate gyrus and the CA3 subregions could underlie the cessation of exploratory activity and spatial navigation skills during hibernation.
Cell and Tissue Research | 1994
Mireille Masson-Pévet; George D; Kalsbeek A; Michel Saboureau; Lakhdar-Ghazal N; Paul Pévet
High affinity melatonin-binding sites have been described, by means of autoradiography with 2-125I-melatonin as the ligand, in more than 60 brain areas of about 20 mammalian species, with dramatic variations in the nature and number of labelled structures among the different species studied. As melatonin is involved in the synchronization of biological rhythms, we have tried to correlate the brain areas containing melatonin-binding sites with some rhythmic functions typical of give species. Therefore, we have studied the location of melatonin-binding sites in the complete brain of five long-day breeders with hibernation cycles, viz. one insectivore and four rodents. With the exception of the suprachiasmatic nuclei and the pars tuberalis of the pituitary, both of which contain binding sites in all five species, few reactive structures are common, even among species from the same family, e.g. the edible dormouse and the garden dormouse.
Chronobiology International | 2006
Paul Pévet; L. Agez; B. Bothorel; Michel Saboureau; F. Gauer; V. Laurent; Mireille Masson-Pévet
In mammals, the complex interaction of neural, hormonal, and behavioral outputs from the suprachiasmatic nucleus (SCN) drives circadian expression of events, either directly or through coordination of the timing of peripheral oscillators. Melatonin, one of the endocrine output signals of the clock, provides the organism with circadian information and can be considered as an endogenous synchronizer, able to stabilize and reinforce circadian rhythms and to maintain their mutual phase‐relationship at the different levels of the circadian network. Moreover, exogenous melatonin, through an action on the circadian clock, affects all levels of the circadian network. The molecular mechanisms underlying this chronobiotic effect have also been investigated in rats. REV‐ERB α seems to be the initial molecular target.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Florent G. Revel; Annika Herwig; Marie-Laure Garidou; Hugues Dardente; Jerome S. Menet; Mireille Masson-Pévet; Valérie Simonneaux; Michel Saboureau; Paul Pévet
Hibernation is a fascinating, yet enigmatic, physiological phenomenon during which body temperature and metabolism are reduced to save energy. During the harsh season, this strategy allows substantial energy saving by reducing body temperature and metabolism. Accordingly, biological processes are considerably slowed down and reduced to a minimum. However, the persistence of a temperature-compensated, functional biological clock in hibernating mammals has long been debated. Here, we show that the master circadian clock no longer displays 24-h molecular oscillations in hibernating European hamsters. The clock genes Per1, Per2, and Bmal1 and the clock-controlled gene arginine vasopressin were constantly expressed in the suprachiasmatic nucleus during deep torpor, as assessed by radioactive in situ hybridization. Finally, the melatonin rhythm-generating enzyme, arylalkylamine N-acetyltransferase, whose rhythmic expression in the pineal gland is controlled by the master circadian clock, no longer exhibits day/night changes of expression but constantly elevated mRNA levels over 24 h. Overall, these data provide strong evidence that in the European hamster the molecular circadian clock is arrested during hibernation and stops delivering rhythmic output signals.
Neuroscience Letters | 1996
R.A. Cutrera; Michel Saboureau; Paul Pévet
The present results show that under constant darkness the endogenous circadian pacemaker located in the suprachiasmatic nuclei can be affected by administration of 8-hydroxy-2-[di-n-propylamino] tetralin (8-OH-DPAT), a well known 5-HT1A/5-HT7 receptor agonist. A single i.p. injection (0.1 ml) with 8-OH-DPAT (5 mg/kg) induced significant phase-advances of hamster locomotor activity at circadian time (CT) 6 and 8 and a significant phase-delay at CT11. Saline injections by themselves induced a significant phase-advance at CT10-11. The dose-response curve for 8-OH-DPAT showed a maximal phase-shifting effect for doses of at least 2.5 mg/kg at CT8. Thus, in golden hamsters. (1) 8-OH-DPAT has a chronobiological effect with sensitivity depending upon the circadian time of injection, and (2) a single saline injection is able to induce regular phase-advances at the end of the subjective day (CT10-11).
European Journal of Neuroscience | 2002
Stéphane Barassin; Sylvie Raison; Michel Saboureau; Christèle Bienvenu; Michel Maitre; André Malan; Paul Pévet
Serotonin (5‐HT) plays an important role in the regulation of the time‐keeping system in rodents. In the present study, we have investigated the interplay between the rhythms of 5‐HT synthesis and release in the suprachiasmatic nuclei (SCN) of the rat. The quantitative distribution of tryptophan hydroxylase (TpH) protein was used as an index of 5‐HT synthesis, in perikarya and terminals areas. In the raphe medianus, the maximal levels of TpH was reached in the early daytime period, followed by a decrease before the onset of darkness. Conversely, in the axon terminals of the SCN the highest levels of TpH were found before the onset of the dark‐period. Furthermore, TpH amount in SCN displays variations depending on the anatomical area of the SCN. Extracellular 5‐HT peaked at the beginning of the night, as evidenced by in vivo microdialysis in the SCN. The 5‐HT metabolite, 5‐HIAA, presented a similar pattern, but the acrophase occurred in the middle of the dark period. These results suggest that TpH is transported from the soma to the nerve terminals in which 5‐HT is synthesized during daytime. This would fill the intracellular stores of 5‐HT to provide for its nocturnal release.
European Journal of Neuroscience | 2008
Andries Kalsbeek; Linda A.W. Verhagen; Ingrid Schalij; Ewout Foppen; Michel Saboureau; Béatrice Bothorel; R.M. Buijs; Paul Pévet
Relatively little is known about the function of the biological clock and its efferent pathways in diurnal species, despite the fact that its major transmitters and neuronal connections are also conserved in humans. The mammalian biological clock is located in the hypothalamic suprachiasmatic nuclei (SCN). Several lines of evidence suggest that the activity cycle of the SCN itself is similar in nocturnal and diurnal mammals. Previously, we showed that, in the rat, vasopressin (VP) derived from the SCN has a strong inhibitory effect on the release of adrenal corticosterone and is an important component in the generation of a daily rhythm in plasma corticosterone concentrations. In the present study we investigated the role of VP in the control of the daily corticosterone rhythm in a diurnal rodent, i.e. Arvicanthis ansorgei. Contrary to our previous (rat) results, VP administered to the hypothalamic paraventricular nucleus in A. ansorgei had a stimulatory effect on the release of corticosterone. Moreover, both the morning and evening rise in corticosterone were blocked by the administration of a VP receptor antagonist. These results show that with regard to the circadian control of the corticosterone rhythm in diurnal and nocturnal rodents, temporal information is carried along the same pathway from the SCN to its target areas, but the response of the target area may be quite different. We propose that the reversed response to VP is due to a change in the phenotype of the target neurons that are contacted by the SCN efferents, i.e. glutamatergic instead of γ‐aminobutyric acid (GABA)ergic.
European Journal of Neuroscience | 2002
Béatrice Bothorel; Stéphane Barassin; Michel Saboureau; Stéphanie Perreau; B. Vivien-Roels; André Malan; Paul Pévet
The effect of exogenous melatonin on pineal melatonin synthesis was studied in the rat in vivo. Daily melatonin profiles were measured by transpineal microdialysis over 4 consecutive days in rats maintained on a 12‐h light : 12‐h dark schedule (LD 12 : 12). Curve‐fitting was used to determine the amplitude of the peak of melatonin production, and the times of its onset (IT50) and offset (DT50). A subcutaneous injection of melatonin (1 mg/kg) at the onset of darkness (ZT12) induced an advance of IT50 on the second day after the treatment, in 50% of the animals kept in LD. When the animals were switched to constant darkness, the treatment caused no detectable advance of IT50, while 70% of individuals showed a significant delay in DT50 2 days after the injection. Locally infusing the drug by reverse microdialysis into the suprachiasmatic nuclei (SCN) failed to enhance the shift in melatonin onset. Following subcutaneous melatonin injection, a significant increase (≈ 100%) in melatonin peak amplitude was observed. This increase persisted over 2 days and occurred only when the melatonin was applied at ZT12, but not at ZT6, 17 or 22. The effect was also observed when the drug was infused directly into the SCN, but not into the pineal. Thus, the SCN are the target site for the effect of exogenous melatonin on the amplitude of the endogenous melatonin rhythm, with a similar window of sensitivity as its phase‐shifting effect on the pacemaker.