Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel Therien is active.

Publication


Featured researches published by Michel Therien.


Bioorganic & Medicinal Chemistry Letters | 1999

The discovery of rofecoxib, [MK 966, VIOXX®, 4-(4′-methylsulfonylphenyl)-3-phenyl-2(5H)-furanone], an orally active cyclooxygenase-2 inhibitor

Petpiboon Prasit; Zhaoyin Wang; Christine Brideau; Chi-Chung Chan; S. Charleson; Wanda Cromlish; Diane Ethier; Jilly F. Evans; Anthony W. Ford-Hutchinson; Jacques-Yves Gauthier; Robert Gordon; Jocelyne Guay; M Gresser; Stacia Kargman; Brian P. Kennedy; Yves Leblanc; Serge Leger; Joseph A. Mancini; Gary P. O'Neill; Marc Ouellet; M.D Percival; Helene Perrier; Denis Riendeau; Ian W. Rodger; Philip Tagari; Michel Therien; Philip J. Vickers; E.H.F. Wong; Lijing Xu; Robert N. Young

The development of a COX-2 inhibitor rofecoxib (MK 966, Vioxx) is described. It is essentially equipotent to indomethacin both in vitro and in vivo but without the ulcerogenic side effect due to COX-1 inhibition.


British Journal of Pharmacology | 1997

Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor

Denis Riendeau; M.D Percival; Susan Boyce; Christine Brideau; S. Charleson; Wanda Cromlish; Diane Ethier; Jilly F. Evans; Jean-Pierre Falgueyret; Anthony W. Ford-Hutchinson; Robert Gordon; Gillian Greig; M Gresser; Jocelyne Guay; Stacia Kargman; Serge Leger; Joseph A. Mancini; Gary P. O'Neill; Marc Ouellet; Ian W. Rodger; Michel Therien; Zhaoyin Wang; J.K. Webb; E.H.F. Wong; Lijing Xu; Robert N. Young; Robert Zamboni; Petpiboon Prasit; Chi-Chung Chan

DFU (5,5‐dimethyl‐3‐(3‐fluorophenyl)‐4‐(4‐methylsulphonyl)phenyl‐2(5H)‐furanone) was identified as a novel orally active and highly selective cyclo‐oxygenase‐2 (COX‐2) inhibitor. In CHO cells stably transfected with human COX isozymes, DFU inhibited the arachidonic acid‐dependent production of prostaglandin E2 (PGE2) with at least a 1,000 fold selectivity for COX‐2 (IC50=41±14 nM) over COX‐1 (IC50>50 μM). Indomethacin was a potent inhibitor of both COX‐1 (IC50=18±3 nM) and COX‐2 (IC50=26±6 nM) under the same assay conditions. The large increase in selectivity of DFU over indomethacin was also observed in COX‐1 mediated production of thromboxane B2 (TXB2) by Ca2+ ionophore‐challenged human platelets (IC50>50 μM and 4.1±1.7 nM, respectively). DFU caused a time‐dependent inhibition of purified recombinant human COX‐2 with a Ki value of 140±68 μM for the initial reversible binding to enzyme and a k2 value of 0.11±0.06 s−1 for the first order rate constant for formation of a tightly bound enzyme‐inhibitor complex. Comparable values of 62±26 μM and 0.06±0.01 s−1, respectively, were obtained for indomethacin. The enzyme‐inhibitor complex was found to have a 1 : 1 stoichiometry and to dissociate only very slowly (t1/2=1–3 h) with recovery of intact inhibitor and active enzyme. The time‐dependent inhibition by DFU was decreased by co‐incubation with arachidonic acid under non‐turnover conditions, consistent with reversible competitive inhibition at the COX active site. Inhibition of purified recombinant human COX‐1 by DFU was very weak and observed only at low concentrations of substrate (IC50=63±5 μM at 0.1 μM arachidonic acid). In contrast to COX‐2, inhibition was time‐independent and rapidly reversible. These data are consistent with a reversible competitive inhibition of COX‐1. DFU inhibited lipopolysaccharide (LPS)‐induced PGE2 production (COX‐2) in a human whole blood assay with a potency (IC50=0.28±0.04 μM) similar to indomethacin (IC50=0.68±0.17 μM). In contrast, DFU was at least 500 times less potent (IC50>97 μM) than indomethacin at inhibiting coagulation‐induced TXB2 production (COX‐1) (IC50=0.19±0.02 μM). In a sensitive assay with U937 cell microsomes at a low arachidonic acid concentration (0.1 μM), DFU inhibited COX‐1 with an IC50 value of 13±2 μM as compared to 20±1 nM for indomethacin. CGP 28238, etodolac and SC‐58125 were about 10 times more potent inhibitors of COX‐1 than DFU. The order of potency of various inhibitors was diclofenac>indomethacin∼naproxen>nimesulide∼ meloxicam∼piroxicam>NS‐398∼SC‐57666>SC‐58125>CGP 28238∼etodolac>L‐745,337>DFU. DFU inhibited dose‐dependently both the carrageenan‐induced rat paw oedema (ED50 of 1.1 mg kg−1 vs 2.0 mg kg−1 for indomethacin) and hyperalgesia (ED50 of 0.95 mg kg−1 vs 1.5 mg kg−1 for indomethacin). The compound was also effective at reversing LPS‐induced pyrexia in rats (ED50=0.76 mg kg−1 vs 1.1 mg kg−1 for indomethacin). In a sensitive model in which 51Cr faecal excretion was used to assess the integrity of the gastrointestinal tract in rats, no significant effect was detected after oral administration of DFU (100 mg kg−1, b.i.d.) for 5 days, whereas chromium leakage was observed with lower doses of diclofenac (3 mg kg−1), meloxicam (3 mg kg−1) or etodolac (10–30 mg kg−1). A 5 day administration of DFU in squirrel monkeys (100 mg kg−1) did not affect chromium leakage in contrast to diclofenac (1 mg kg−1) or naproxen (5 mg kg−1). The results indicate that COX‐1 inhibitory effects can be detected for all selective COX‐2 inhibitors tested by use of a sensitive assay at low substrate concentration. The novel inhibitor DFU shows the lowest inhibitory potency against COX‐1, a consistent high selectivity of inhibition of COX‐2 over COX‐1 (>300 fold) with enzyme, whole cell and whole blood assays, with no detectable loss of integrity of the gastrointestinal tract at doses >200 fold higher than efficacious doses in models of inflammation, pyresis and hyperalgesia. These results provide further evidence that prostanoids derived from COX‐1 activity are not important in acute inflammatory responses and that a high therapeutic index of anti‐inflammatory effect to gastropathy can be achieved with a selective COX‐2 inhibitor.


Bioorganic & Medicinal Chemistry Letters | 2008

The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K.

Jacques Yves Gauthier; Nathalie Chauret; Wanda Cromlish; Sylvie Desmarais; Le T. Duong; Jean-Pierre Falgueyret; Donald B. Kimmel; Sonia Lamontagne; Serge Leger; Tammy LeRiche; Chun Sing Li; Frédéric Massé; Daniel J. McKay; Deborah A. Nicoll-Griffith; Renata Oballa; James T. Palmer; M. David Percival; Denis Riendeau; Joel Robichaud; Gideon A. Rodan; Sevgi B. Rodan; Carmai Seto; Michel Therien; Vouy-Linh Truong; Michael C. Venuti; Gregg Wesolowski; Robert N. Young; Robert Zamboni; W. Cameron Black

Odanacatib is a potent, selective, and neutral cathepsin K inhibitor which was developed to address the metabolic liabilities of the Cat K inhibitor L-873724. Substituting P1 and modifying the P2 side chain led to a metabolically robust inhibitor with a long half-life in preclinical species. Odanacatib was more selective in whole cell assays than the published Cat K inhibitors balicatib and relacatib. Evaluation in dermal fibroblast culture showed minimal intracellular collagen accumulation relative to less selective Cat K inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2003

Pyridazinones as selective cyclooxygenase-2 inhibitors.

Chun Sing Li; Christine Brideau; Chi-Chung Chan; Chantal Savoie; David Claveau; S. Charleson; Robert Gordon; Gillian Greig; Jacques Yves Gauthier; Cheuk K. Lau; Denis Riendeau; Michel Therien; Elizabeth Wong; Petpiboon Prasit

Pyridazinone was found to be an excellent core template for selective COX-2 inhibitors. Two potent, selective and orally active COX-2 inhibitors, which were highly efficacious in rat paw edema and rat pyresis models, have been obtained.


Bioorganic & Medicinal Chemistry Letters | 1997

Synthesis and biological evaluation of 5,6-diarylimidazo[2.1-b]thiazole as selective COX-2 inhibitors

Michel Therien; Christine Brideau; Chi-Chung Chan; Wanda Cromlish; Jacques Yves Gauthier; Robert Gordon; Gillian Greig; Stacia Kargman; Cheuk K. Lau; Yves Leblanc; Chun-Sing Li; Gary P. O'Neill; Denis Riendeau; Patrick Roy; Zhaoyin Wang; Lijing Xu; Petpiboon Prasit

Abstract A series of 5,6-diarylimidazo[2.1-b]thiazole compounds were prepared and their inhibitory potencies against COX-2 and Cox-1 enzymes were measured. This led to the identification of L-766,112 as a potent, orally active and selective inhibitor of the COX-2 enzyme.


Bioorganic & Medicinal Chemistry Letters | 1997

A new series of selective COX-2 inhibitors: 5,6-diarylthiazolo[3,2-b][1,2,4]triazoles

Patrick Roy; Yves Leblanc; Richard G. Ball; Christine Brideau; Chi-Chung Chan; Nathalie Chauret; Wanda Cromlish; Diane Ethier; Jacques-Yves Gauthier; Robert Gordon; Gillian Greig; Jocelyne Guay; Stacia Kargman; Cheuk K. Lau; Gary P. O'Neill; José M. Silva; Michel Therien; C. van Staden; Elizabeth Wong; Lijing Xu; Petpiboon Prasit

A series of 5,6-diarylthiazolo[3,2-b][1,2,4]triazoles was prepared for evaluation of potency and selectivity against human COX-1 and COX-2 enzymes. This lead to the discovery of L-768,277, a potent and selective COX-2 inhibitor that also demonstrated good in vivo activity.


Bioorganic & Medicinal Chemistry Letters | 2000

Synthesis, characterization, and activity of metabolites derived from the cyclooxygenase-2 inhibitor rofecoxib (MK-0966, Vioxx)

Deborah A. Nicoll-Griffith; James A. Yergey; Laird A. Trimble; José M. Silva; Chun Li; Nathalie Chauret; Jacques Yves Gauthier; Erich L. Grimm; Serge Leger; Patrick Roy; Michel Therien; Zhaoyin Wang; Peppi Prasit; Robert Zamboni; Robert N. Young; Christine Brideau; Chi-Chung Chan; Joseph A. Mancini; Denis Riendeau

Metabolites of the COX-2 inhibitor rofecoxib (MK-0966, Vioxx) were prepared by synthetic or biosynthetic methods. Metabolites include products of oxidation, glucuronidation, reduction and hydrolytic ring opening. Based on an in vitro whole blood assay, none of the known human metabolites of rofecoxib inhibits COX-1 nor contributes significantly to the inhibition of COX-2.


Bioorganic & Medicinal Chemistry Letters | 2008

Discovery of [(3-bromo-7-cyano-2-naphthyl)(difluoro)methyl]phosphonic acid, a potent and orally active small molecule PTP1B inhibitor

Yongxin Han; Michel Belley; Christopher I. Bayly; John Colucci; Claude Dufresne; André Giroux; Cheuk K. Lau; Yves Leblanc; Daniel J. McKay; Michel Therien; Marie-Claire Wilson; Kathryn Skorey; Chi-Chung Chan; Giovana Scapin; Brian P. Kennedy

A series of quinoline/naphthalene-difluoromethylphosphonates were prepared and were found to be potent PTP1B inhibitors. Most of these compounds bearing polar functionalities or large lipophilic residues did not show appreciable oral bioavailability in rodents while small and less polar analogs displayed moderate to good oral bioavailability. The title compound was found to have the best overall potency and pharmacokinetic profile and was found to be efficacious in animal models of diabetes and cancer.


Journal of Biological Chemistry | 2006

Conformation-assisted Inhibition of Protein-tyrosine Phosphatase-1B Elicits Inhibitor Selectivity over T-cell Protein-tyrosine Phosphatase

Ernest Asante-Appiah; Sangita B. Patel; Caroline Desponts; Jillian Taylor; Cheuk K. Lau; Claude Dufresne; Michel Therien; Rick Friesen; Joseph W. Becker; Yves Leblanc; Brian Kennedy; Giovanna Scapin

PTP-1B represents an attractive target for the treatment of type 2 diabetes and obesity. Given the role that protein phosphatases play in the regulation of many biologically relevant processes, inhibitors against PTP-1B must be not only potent, but also selective. It has been extremely difficult to synthesize inhibitors that are selective over the highly homologous TCPTP. We have successfully exploited the conservative Leu119 to Val substitution between the two enzymes to synthesize a PTP-1B inhibitor that is an order of magnitude more selective over TCPTP. Structural analyses of PTP-1B/inhibitor complexes show a conformation-assisted inhibition mechanism as the basis for selectivity. Such an inhibitory mechanism may be applicable to other homologous enzymes.


Bioorganic & Medicinal Chemistry Letters | 1999

Synthesis and biological evaluation of 3-heteroaryloxy-4-phenyl-2(5H)-furanones as selective COX-2 inhibitors

Cheuk K. Lau; Christine Brideau; Chi-Chung Chan; S. Charleson; Wanda Cromlish; Diane Ethier; Jacques Yves Gauthier; Robert Gordon; Jocelyne Guay; Stacia Kargman; Chun-Sing Li; Petpiboon Prasit; Denis Reindeau; Michel Therien; Denise M. Visco; Lijing Xu

A series of 3-heteroaryloxy4-phenyl-2-5H)-furanones were prepared and evaluated for their potency and selectivity as COX-2 inhibitors. This led to the identification of L-778,736 as a potent, orally active and selective inhibitor of the COX-2 enzyme.

Collaboration


Dive into the Michel Therien's collaboration.

Researchain Logo
Decentralizing Knowledge