Michel Van Roozendael
Belgian Institute for Space Aeronomy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michel Van Roozendael.
Journal of Geophysical Research | 2010
Jennifer Carrie Hains; K. Folkert Boersma; M. Kroon; Ruud J. Dirksen; R. C. Cohen; Anne E. Perring; Eric John Bucsela; Hester Volten; Daan P. J. Swart; Andreas Richter; F. Wittrock; Anja Schoenhardt; Thomas Wagner; Ow Ibrahim; Michel Van Roozendael; Gaia Pinardi; James F. Gleason; J. Pepijn Veefkind; Pieternel F. Levelt
We present a sensitivity analysis of the tropospheric NO2 retrieval from the Ozone Monitoring Instrument (OMI) using measurements from the Dutch Aerosol and Nitrogen Dioxide Experiments for Validation of OMI and SCIAMACHY (DANDELIONS) and Intercontinental Chemical Transport Experiment-B (INTEX-B) campaigns held in 2006. These unique campaigns covered a wide range of pollution conditions and provided detailed information on the vertical distribution of NO2. During the DANDELIONS campaign, tropospheric NO2 profiles were measured with a lidar in a highly polluted region of the Netherlands. During the INTEX-B campaign, NO2 profiles were measured using laser-induced fluorescence onboard an aircraft in a range of meteorological and polluted conditions over the Gulf of Mexico and the east Pacific. We present a comparison of measured profiles with a priori profiles used in the OMI tropospheric NO2 retrieval algorithm. We examine how improvements in surface albedo estimates improve the OMI NO2 retrieval. From these comparisons we find that the absolute average change in tropospheric columns retrieved with measured profiles and improved surface albedos is 23% with a standard deviation of 27% and no trend in the improved being larger or smaller than the original. We show that these changes occur in case studies related to pollution in the southeastern United States and pollution outflow in the Gulf of Mexico. We also examine the effects of using improved Mexico City terrain heights on the OMI NO2 product.
Journal of Geophysical Research | 1995
D. J. Hofmann; Paolo Bonasoni; Martine De Mazière; Franco Evangelisti; Giorgio Giovanelli; Aaron Goldman; Florence Goutail; Jerald W. Harder; R. O. Jakoubek; P. V. Johnston; Jim Kerr; W. Andrew Matthews; Tom Mcelroy; Richard McKenzie; George H. Mount; U. Platt; Jean-Pierre Pommereau; Alain Sarkissian; Paul C. Simon; Susan Solomon; J. Stutz; Alan Thomas; Michel Van Roozendael; Edmund Wu
During the period May 12–23, 1992, seven groups from seven countries met in Lauder, New Zealand, to intercompare their remote sensing instruments for the measurement of atmospheric column NO2 from the surface. The purpose of the intercomparison was to determine the degree of intercomparability and to qualify instruments for use in the Network for the Detection of Stratospheric Change (NDSC). Three of the instruments which took part in the intercomparison are slated for deployment at primary NDSC sites. All instruments were successful in obtaining slant column NO2 amounts at sunrise and sunset on most of the 12 days of the intercomparison. The group as a whole was able to make measurements of the 90° solar zenith angle slant path NO2 column amount that agreed to about ±10% most of the time; however, the sensitivity of the individual measurements varied considerably. Part of the sensitivity problem for these measurements is the result of instrumentation, and part is related to the data analysis algorithms used. All groups learned a great deal from the intercomparison and improved their results considerably as a result of this exercise.
Journal of the Atmospheric Sciences | 1999
J.-C. Lambert; Michel Van Roozendael; Martine De Mazière; Paul C. Simon; Jean-Pierre Pommereau; Florence Goutail; Alain Sarkissian; James F. Gleason
Abstract Spaceborne atmospheric chemistry sensors provide unique access to the distribution and variation of the concentration of many trace species on the global scale. However, since the measurements and the retrieval algorithms are sensitive to a variety of instrumental as well as atmospheric sources of error, they need to be validated carefully by correlative measurements. The quality control and validation of satellite measurements on the global scale, as well as in the long term, is one of the goals of the Network for the Detection of Stratospheric Change (NDSC). Started in 1991, at the present time the NDSC includes five primary and two dozen complementary stations distributed from the Arctic to the Antarctic, comprising a variety of instruments such as UV–visible spectrometers, Fourier transform infrared spectrometers, lidars, and millimeter-wave radiometers. After an overview of the main sources of uncertainty which could perturb the measurements from space, and of the ground-based data provided ...
Geophysical Research Letters | 2009
M. P. Barkley; Paul I. Palmer; Isabelle De Smedt; Thomas Karl; Alex Guenther; Michel Van Roozendael
We perform Empirical Orthogonal Function (EOF) analysis on 12 years of global GOME and SCIAMACHY formaldehyde (HCHO) column observations to determine the most significant spatial and temporal HCHO variations. In most regions, we find that HCHO variability is predominantly driven by seasonal variations of biogenie emissions and biomass burning. However, unusually low HCHO columns are consistently observed over the Amazon rainforest during the transition from the wet-to-dry seasons. We use MODIS leaf area and enhanced vegetation indices, to show variations in vegetation are consistent with the observed decrease in HCHO during this period (correlations of 0.69 and 0.67, respectively). Based on this evidence, we suggest isoprene emitting vegetation experience widespread leaf flushing (new leaf growth) prior to the dry season, resulting in a large-scale annual shutdown of Amazonian isoprene emissions.
Journal of Geophysical Research | 2011
M. P. Barkley; Paul I. Palmer; Laurens Ganzeveld; Almut Arneth; Daniel Hagberg; Thomas R. Karl; Alex Guenther; Fabien Paulot; Paul O. Wennberg; Jingqiu Mao; Thomas P. Kurosu; Kelly Chance; J.-F. Müller; Isabelle De Smedt; Michel Van Roozendael; D. Chen; Yuxuan Wang; Robert M. Yantosca
We present an evaluation of a nested high-resolution Goddard Earth Observing System (GEOS)-Chem chemistry transport model simulation of tropospheric chemistry over tropical South America. The model has been constrained with two isoprene emission inventories: (1) the canopy-scale Model of Emissions of Gases and Aerosols from Nature (MEGAN) and (2) a leaf-scale algorithm coupled to the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model, and the model has been run using two different chemical mechanisms that contain alternative treatments of isoprene photo-oxidation. Large differences of up to 100 Tg C yr^(−1) exist between the isoprene emissions predicted by each inventory, with MEGAN emissions generally higher. Based on our simulations we estimate that tropical South America (30–85°W, 14°N–25°S) contributes about 15–35% of total global isoprene emissions. We have quantified the model sensitivity to changes in isoprene emissions, chemistry, boundary layer mixing, and soil NO_x emissions using ground-based and airborne observations. We find GEOS-Chem has difficulty reproducing several observed chemical species; typically hydroxyl concentrations are underestimated, whilst mixing ratios of isoprene and its oxidation products are overestimated. The magnitude of model formaldehyde (HCHO) columns are most sensitive to the choice of chemical mechanism and isoprene emission inventory. We find GEOS-Chem exhibits a significant positive bias (10–100%) when compared with HCHO columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Ozone Monitoring Instrument (OMI) for the study year 2006. Simulations that use the more detailed chemical mechanism and/or lowest isoprene emissions provide the best agreement to the satellite data, since they result in lower-HCHO columns.
Applied Optics | 2005
Robert Spurr; Diego Loyola; Werner Thomas; Wolfgang Balzer; Eberhard Mikusch; Bernd Aberle; Sander Slijkhuis; Thomas Ruppert; Michel Van Roozendael; J.-C. Lambert; Trisnanto Soebijanta
The global ozone monitoring experiment (GOME) was launched in April 1995, and the GOME data processor (GDP) retrieval algorithm has processed operational total ozone amounts since July 1995. GDP level 1-to-2 is based on the two-step differential optical absorption spectroscopy (DOAS) approach, involving slant column fitting followed by air mass factor (AMF) conversions to vertical column amounts. We present a major upgrade of this algorithm to version 3.0. GDP 3.0 was implemented in July 2002, and the 9-year GOME data record from July 1995 to December 2004 has been processed using this algorithm. The key component in GDP 3.0 is an iterative approach to AMF calculation, in which AMFs and corresponding vertical column densities are adjusted to reflect the true ozone distribution as represented by the fitted DOAS effective slant column. A neural network ensemble is used to optimize the fast and accurate parametrization of AMFs. We describe results of a recent validation exercise for the operational version of the total ozone algorithm; in particular, seasonal and meridian errors are reduced by a factor of 2. On a global basis, GDP 3.0 ozone total column results lie between -2% and +4% of ground-based values for moderate solar zenith angles lower than 70 degrees. A larger variability of about +5% and -8% is observed for higher solar zenith angles up to 90 degrees.
Journal of Geophysical Research | 1998
Martine De Mazière; Michel Van Roozendael; C. Hermans; Paul C. Simon; Philippe Demoulin; Ginette Roland; Rodolphe Zander
The colocation of two technically different instruments for ground-based remote sensing of NO2 total column amounts at the primary Network for the Detection of Stratospheric Change Alpine station of the Jungfraujoch (46.5°N, 8.0°E) has been exploited for mutual validation of the long-term NO2 time series from both instruments and for a quantitative evaluation of the impact of the Mount Pinatubo eruption on the NO2 abundance above this northern midlatitude observatory. The two techniques are high-resolution Fourier transform infrared solar absorption spectrometry and zenith-sky differential optical absorption spectroscopy in the UV visible. The diurnal variation of NO2 has been simulated by a simple photochemical model that allows a comparison between the data from the two techniques. This model is shown to reproduce the observed morning to evening ratios to 2.3%, on average, which is fully adequate for the needs of this study. From the 1985–1996 combined time series of NO2 morning and evening abundances, it has been concluded that the enhanced aerosol load injected into the stratosphere by Mount Pinatubo caused a maximum NO2 reduction above the Jungfraujoch by 45% in early January 1992 that died out quasi-exponentially to zero by the beginning of 1995.
Journal of Geophysical Research | 2012
M. P. Barkley; Thomas P. Kurosu; Kelly Chance; Isabelle De Smedt; Michel Van Roozendael; Almut Arneth; Daniel Hagberg; Alex Guenther
We use a nested-grid version of the GEOS-Chem chemistry transport model, constrained by isoprene emissions from the Model of Emissions of Gases and Aerosols from Nature (MEGAN), and the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) bottom-up inventories, to evaluate the impact that surface isoprene emissions have on formaldehyde (HCHO) air-mass factors (AMFs) and vertical column densities (VCDs) over tropical South America during 2006, as observed by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Ozone Monitoring Instrument (OMI). Although the large-scale seasonal variability of monthly mean HCHO VCDs is typically unaffected by the choice of bottom-up inventory, large relative differences of up to +/- 45% in the HCHO VCD can occur for individual regions and months, but typically most VCD differences are of order +/- 20%. These relative changes are comparable to those produced by other sources of uncertainty in the AMF including aerosols and surface albedo, but less than those from clouds. In a sensitivity test, we find that top-down annual isoprene emissions inferred from SCIAMACHY and OMI HCHO vertical columns can vary by as much as +/- 30-50% for each instrument respectively, depending on the region studied and the a priori isoprene emissions used. Our analysis suggests that the influence of the a priori isoprene emissions on HCHO AMFs and VCDs is therefore non-negligible and must be carefully considered when inferring top-down isoprene emissions estimates over this, or potentially any other, region.
Geophysical Research Letters | 2011
Siegfried Gonzi; Paul I. Palmer; M. P. Barkley; Isabelle De Smedt; Michel Van Roozendael
We infer monthly regional biomass burning emissions of formaldehyde (HCHO) during 2006 from space-borne column measurements of HCHO from the SCIAMACHY instrument over Canada, boreal Asia, South America, southern Africa, and Indonesia. We remove the influence of biogenic volatile organic compounds using an offline chemical mechanism. We quantify the sensitivity of our emission estimates to aerosol single scattering albedo, ω, indicative of fresh (ω = 0.8) and aged (ω > 0.9) aerosol, and the relative vertical distribution of the aerosol and HCHO, both which compromise the interpretation of space-based HCHO columns. For our control calculation we assume freshly-emitted gases and aerosols that are mainly confined to the boundary layer. Associated posterior emissions are generally lower than the prior emissions except over Canada and boreal Asia during northern hemisphere summer months. Accounting for faster vertical mixing results in posterior emissions 20%–100% higher than the corresponding control calculation, and consequently more consistent with the prior. Assuming an aged aerosol generally results in a 20% decrease in posterior emissions relative to prior values. Based on the range of posterior estimates from our sensitivity analyses, not accounting for uncertainties associated with the underlying gas-phase and heterogeneous chemistry, we estimate HCHO emission uncertainties are typically 20%–30% but can be up to 300% in extreme cases.
Geophysical Research Letters | 2014
Nicolas Theys; Isabelle De Smedt; Michel Van Roozendael; L. Froidevaux; Lieven Clarisse; F. Hendrick
Volcanoes release large amounts of halogen species such as HCl and HBr, which can be converted into reactive halogens by heterogeneous photochemical reactions that are currently not fully characterized. Here we report on the first satellite detection of volcanic chlorine dioxide (OClO). Measurements were performed using the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography instrument for the ash-laden plume emitted after the 2011 eruption of Puyehue-Cordon Caulle in Chile. We also identified volcanic BrO using the Ozone Monitoring Instrument, as well as enhanced HCl in data of the Microwave Limb Sounder instrument. These observations suggest that OClO was formed in the plume by the ClO + BrO reaction in presence of a large excess of ClO. The present satellite data set could help better understand reactive halogen chemistry in volcanic plumes and its impact on atmospheric composition.