Michel Veuille
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michel Veuille.
BMC Bioinformatics | 2009
Frédéric Austerlitz; Olivier David; Brigitte Schaeffer; Kevin Bleakley; Madalina Olteanu; Raphaël Leblois; Michel Veuille; Catherine Larédo
BackgroundDNA barcoding aims to assign individuals to given species according to their sequence at a small locus, generally part of the CO1 mitochondrial gene. Amongst other issues, this raises the question of how to deal with within-species genetic variability and potential transpecific polymorphism. In this context, we examine several assignation methods belonging to two main categories: (i) phylogenetic methods (neighbour-joining and PhyML) that attempt to account for the genealogical framework of DNA evolution and (ii) supervised classification methods (k-nearest neighbour, CART, random forest and kernel methods). These methods range from basic to elaborate. We investigated the ability of each method to correctly classify query sequences drawn from samples of related species using both simulated and real data. Simulated data sets were generated using coalescent simulations in which we varied the genealogical history, mutation parameter, sample size and number of species.ResultsNo method was found to be the best in all cases. The simplest method of all, one nearest neighbour, was found to be the most reliable with respect to changes in the parameters of the data sets. The parameter most influencing the performance of the various methods was molecular diversity of the data. Addition of genetically independent loci - nuclear genes - improved the predictive performance of most methods.ConclusionThe study implies that taxonomists can influence the quality of their analyses either by choosing a method best-adapted to the configuration of their sample, or, given a certain method, increasing the sample size or altering the amount of molecular diversity. This can be achieved either by sequencing more mtDNA or by sequencing additional nuclear genes. In the latter case, they may also have to modify their data analysis method.
Human Biology | 2011
Evelyne Heyer; Lionel Brazier; Laure Ségurel; Tatiana Hegay; Frédéric Austerlitz; Lluis Quintana-Murci; Myriam Georges; Patrick Pasquet; Michel Veuille
Abstract n The aim of the present study is to document the evolution of the lactase persistence trait in Central Asia, a geographical area that is thought to have been a region of long-term pastoralism. Several ethnic groups co-exist in this area: Indo-Iranian speakers who are traditionally agriculturist (Tajik) and Turkic speakers who used to be nomadic herders (Kazakh, Karakalpak, Kyrgyz, Turkmen). It was recently demonstrated that horse milking practice existed in the Botai culture of Kazakhstan as early as 5,500 BP (Outram et al. 2009). However, the frequency of the lactase persistence trait and its genetic basis in Central Asian populations remain largely unknown. We propose here the first genotype-phenotype study of lactase persistence in Central Asia based on 183 individuals, as well as the estimation of the time of expansion of the lactase-persistence associated polymorphism. Our results show a remarkable genetic-phenotypic correlation, with the causal polymorphism being the same than in Europe (-13.910C>T, rs4988235). The lactase persistence trait is at low frequency in these populations: between 25% and 32% in the Kazakh population (traditionally herders), according to phenotype used, and between 11% and 30% in the Tajiko-Uzbek population (agriculturalists). The difference in lactase persistence between populations, even if small, is significant when using individuals concordant for both excretion of breath hydrogen and the lactose tolerance blood glucose test phenotypes (P = 0.018, 25% for Kazakh vs. 11% for Tajiko-Uzbeks), and the difference in frequency of the -13.910*T allele is almost significant (P = 0.06, 30% for Kazakhs vs. 19% for Tajiko-Uzbeks). Using the surrounding haplotype, we estimate a date of expansion of the T allele around 6,000–12,000 yrs ago, which is consistent with archaeological records for the emergence of agropastoralism and pastoralism in Central Asia.
Journal of Molecular Evolution | 1991
Luce Rat; Michel Veuille; Jean-Antoine Lepesant
SummaryDrosophila melanogaster alcohol dehydrogenase is an example of convergent evolution: it is not related to the ADHs of other organisms, but to short-chain dehydrogenases, which until now have been found only in bacteria and in mammalian steroid hormone metabolism. We present evidence that theDrosophila ADH is phylogenetically more closely related to P6, another highly expressed protein from the fat body ofDrosophila, than it is to the short-chain dehydrogenases. The polypeptide sequence of P6 was inferred from DNA sequence analysis. Both ADH and P6 polypeptides have retained a high structural similarity with respect to the Chou-Fasman prediction of secondary structure and hydropathy. P6 is also homologous to the 25-kd protein from the fat body ofSarcophaga peregrina, whose sequence we have reexamined. The evolution of the P6-ADH family of proteins is characterized by a dramatic increase in the methionine content of P6. Methionine accounts for 20% of P6 amino acids. This is in contrast with the absence of this amino acid in mature ADH. There is evidence that P6 and the 25-kd protein have undergone a parallel and independent enrichment in methionine. When corrected for this, the rate of amino acid replacement shows that the P6-25-kd lineage diverged from insect ADH shortly before the divergence of the ADH gene (Adh) from its 3′-duplication (Adhdup).
Nature Communications | 2016
Amir Yassin; Héloı̈se Bastide; Henry Chung; Michel Veuille; Jean R. David; John E. Pool
Dimorphic traits are ubiquitous in nature, but the evolutionary factors leading to dimorphism are largely unclear. We investigate a potential case of sexual mimicry in Drosophila erecta, in which females show contrasting resemblance to males. We map the genetic basis of this sex-limited colour dimorphism to a region containing the gene tan. We find a striking signal of ancient balancing selection at the ‘male-specific enhancer of tan, with exceptionally high sequence divergence between light and dark alleles, suggesting that this dimorphism has been adaptively maintained for millions of years. Using transgenic reporter assays, we confirm that these enhancer alleles encode expression differences that are predicted to generate this pigmentation dimorphism. These results are compatible with the theoretical prediction that divergent phenotypes maintained by selection can evolve simple genetic architectures.
Molecular Phylogenetics and Evolution | 2009
Amir Yassin; Christiane Amédégnato; Corinne Cruaud; Michel Veuille
The acridian genus Schistocerca comprises about 50 species which are endemic to the New World, except the Old World locust S. gregaria. Their morphological identification is rendered difficult by phase polyphenism, geographical overlap due to migrations or swarming, the difficulty to easily differentiate genitalia and the occurrence of interspecific hybrids. The three species reported from Peru include the swarming species S. interrita, a pest that can be recognized only by taxonomists. We show that it can be unambiguously identified using a mitochondrial DNA fragment known to have barcoding properties in this genus. We used several methods to delimitate Peruvian species. While S. interrita and S. pallens were well characterized, S. piceifrons peruviana was split into several taxa by a phylogeny-based method, whereas a combination of population genetics methods led one to identify only the three nominal species. A tentative reconstruction of the species history shows that several populations of S. piceifrons peruviana have recently increased in number, while exchanging some migrants, whereas an isolated population at the northern margin of the species range is substantially differentiated while exchanging no migrants with the others. This complex history has resulted in an atypical lineage pattern that appears to have confounded the standard assumptions underlying available species delimitation methods. Because of its behavioral property which tends to keep it panmictic, the identification of the swarming S. interrita remained unaffected.
Behavior Genetics | 1988
Michel Veuille; Suzanne Mazeau
Although many experiments on laboratory stocks ofDrosophila have suggested that mate choice is a major feature of sexual selection in this organism, few attempts have been made to measure its extent in wild populations. In this study, a crossing design was used to obtain a set of 13 genetically identical independent lines representative of genotypes from an African population ofDrosophila melanogaster. They were tested for variation in sexual behavior using dyadic tests. Significant variation in orientation and vibration latencies was found for males, and in mating speed and copulation duration for both sexes. No evidence of assortative mating, either positive or negative, was found. The absence of a correlation in mating speed between males and females sharing the same genotype leads us to doubt the applicability of the notion of “male eagerness” and “female reluctancy” inDrosophila and the importance of “vigor” as a factor in mating speed. The absence of mate choice in natural populations ofDrosophila seems to us the most likely hypothesis on the basis of both theory and empirical evidence.
Scientific Reports | 2016
Pierpaolo Maisano Delser; Shannon Corrigan; Matthew Hale; Chenhong Li; Michel Veuille; Serge Planes; Gavin J.P. Naylor; Stefano Mona
Population genetics studies on non-model organisms typically involve sampling few markers from multiple individuals. Next-generation sequencing approaches open up the possibility of sampling many more markers from fewer individuals to address the same questions. Here, we applied a target gene capture method to deep sequence ~1000 independent autosomal regions of a non-model organism, the blacktip reef shark (Carcharhinus melanopterus). We devised a sampling scheme based on the predictions of theoretical studies of metapopulations to show that sampling few individuals, but many loci, can be extremely informative to reconstruct the evolutionary history of species. We collected data from a single deme (SID) from Northern Australia and from a scattered sampling representing various locations throughout the Indian Ocean (SCD). We explored the genealogical signature of population dynamics detected from both sampling schemes using an ABC algorithm. We then contrasted these results with those obtained by fitting the data to a non-equilibrium finite island model. Both approaches supported an Nm value ~40, consistent with philopatry in this species. Finally, we demonstrate through simulation that metapopulations exhibit greater resilience to recent changes in effective size compared to unstructured populations. We propose an empirical approach to detect recent bottlenecks based on our sampling scheme.
Behavior Genetics | 1986
Michel Veuille; Suzanne Mazeau
The hypothesis that negative assortative mating occurs as a mechanism limiting inbreeding between genetically related individuals ofDrosophila melanogaster was tested. In order to avoid bias linked to using inbred lines, experiments made use of the F1 hybrid progeny between lines rendered homozygous on chromosomes 1, 2, and 3. No negative assortative mating was found, but significant additive variation was observed between lines for orientation, vibration, copulation latencies, and copulation duration. There was no consistency of results, either among parameters or between sexes from the same line. It is therefore unlikely that the variations observed are due merely to quantitative differences in “vigor”. Since all lines originated from the same wild population, these differences are a possible estimate of natural variation in sexual behavior.
Scientific Reports | 2017
Erwan Delrieu-Trottin; Stefano Mona; Jeffrey A. Maynard; Valentina Neglia; Michel Veuille; Serge Planes
Despite the unique nature of endemic species, their origin and population history remain poorly studied. We investigated the population history of 28 coral reef fish species, close related, from the Gambier and Marquesas Islands, from five families, with range size varying from widespread to small-range endemic. We analyzed both mitochondrial and nuclear sequence data using neutrality test and Bayesian analysis (EBSP and ABC). We found evidence for demographic expansions for most species (24 of 28), irrespective of range size, reproduction strategy or archipelago. The timing of the expansions varied greatly among species, from 8,000 to 2,000,000 years ago. The typical hypothesis for reef fish that links population expansions to the Last Glacial Maximum fit for 14 of the 24 demographic expansions. We propose two evolutionary processes that could lead to expansions older than the LGM: (a) we are retrieving the signature of an old colonization process for widespread, large-range endemic and paleoendemic species or (b) speciation; the expansion reflects the birth of the species for neoendemic species. We show for the first time that the demographic histories of endemic and widespread reef fish are not distinctly different and suggest that a number of processes drive endemism.
Ecology and Evolution | 2013
Stefano Mona; Ernest Mordret; Michel Veuille; Mila Tommaseo-Ponzetta
Abstract Mitochondrial DNA (mtDNA) and Y chromosome (NRY) genetic markers have been often contrasted to investigate sex-specific dynamics. Traditionally, isolation by distance, intrapopulation genetic diversity and population differentiation are estimated from both markers and compared. Two possible sources of bias are often neglected. First, kilometric distances are frequently used as predictor of the connectivity between groups, hiding the role played by environmental features at a microgeographic scale. Second, the comparison of intrapopulation diversity and population differentiation between mtDNA and NRY is hampered by their different mutational mechanisms and rates. Here, we show how to account for these biases by analyzing from a different perspective a published dataset of eight West New Guinea (WNG) populations for which mtDNA control region sequences and seven linked NRY microsatellites had been typed. First, we modeled the connectivity among sampled populations by computing the number of days required to travel between groups. Then, we investigated the differences between the two sexes accounting for the molecular characteristics of the markers examined to obtain estimates on the product of the effective population size and the migration rate among demes (Nm). We achieved this goal by studying the shape of the gene genealogy at several sampling levels and using spatial explicit simulations. Both the direction and the rate of migration differ between male and females, with an Nm estimated to be >6 times higher in the latter under many evolutionary scenarios. We finally highlight the importance of applying metapopulation models when analyzing the genetic diversity of a species. We have applied the prediction of the sampling theory in a meta-population and we have corroborated our finding using spatial explicit simulations. Both approaches are fundamentally meant to deal with structured populations: we strongly believe in the importance of tacking structure into account when inferring the demographic history of a species.