Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel W. Barsoum is active.

Publication


Featured researches published by Michel W. Barsoum.


Advanced Materials | 2011

Two-Dimensional Nanocrystals Produced by Exfoliation of Ti(3)AlC(2)

Michael Naguib; Murat Kurtoglu; Volker Presser; Jun Lu; Jun Jie Niu; Min Heon; Lars Hultman; Yury Gogotsi; Michel W. Barsoum

Currently, however, there are relatively few such atomically layered solids. [ 2–5 ] Here, we report on 2D nanosheets, composed of a few Ti 3 C 2 layers and conical scrolls, produced by the room temperature exfoliation of Ti 3 AlC 2 in hydrofl uoric acid. The large elastic moduli predicted by ab initio simulation, and the possibility of varying their surface chemistries (herein they are terminated by hydroxyl and/or fl uorine groups) render these nanosheets attractive as polymer composite fi llers. Theory also predicts that their bandgap can be tuned by varying their surface terminations. The good conductivity and ductility of the treated powders suggest uses in Li-ion batteries, pseudocapacitors, and other electronic applications. Since Ti 3 AlC 2 is a member of a 60 + group of layered ternary carbides and nitrides known as the MAX phases, this discovery opens a door to the synthesis of a large number of other 2D crystals. Arguably the most studied freestanding 2D material is graphene, which was produced by mechanical exfoliation into single-layers in 2004. [ 1 ] Some other layered materials, such as hexagonal BN, [ 2 ] transition metal oxides, and hydroxides, [ 4 ] as well as clays, [ 3 ] have also been exfoliated into 2D sheets. Interestingly, exfoliated MoS 2 single layers were reported as early as in 1986. [ 5 ] Graphene is fi nding its way to applications ranging from supercapacitor electrodes [ 6 ] to reinforcement in composites. [ 7 ] Although graphene has attracted more attention than all other 2D materials combined, its simple chemistry and the weak van der Waals bonding between layers in multilayer structures limit its use. Complex, layered structures that contain more than one element may offer new properties because they


Science | 2013

Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide

Maria R. Lukatskaya; Olha Mashtalir; Chang E. Ren; Yohan Dall’Agnese; Patrick Rozier; Pierre-Louis Taberna; Michael Naguib; Patrice Simon; Michel W. Barsoum; Yury Gogotsi

Toward Titanium Carbide Batteries Many batteries and capacitors make use of lithium intercalation as a means of storing and transporting charge. Lithium is commonly used because it offers the best energy density, but also because there are difficulties in storing larger cations without disrupting the crystal structure of the host. Lukatskaya et al. (p. 1500) developed a series of MX compounds, where M represents a transition metal and X is carbon or nitrogen.The compound Ti3C2 forms a two dimensional layered structure, which is capable of accommodating a wide range of cations, including multivalent ones, either spontaneously or electrochemically The layered material Ti3C2 can intercalate much larger cations than Li+, allowing for energy storage applications. The intercalation of ions into layered compounds has long been exploited in energy storage devices such as batteries and electrochemical capacitors. However, few host materials are known for ions much larger than lithium. We demonstrate the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers. MXenes combine 2D conductive carbide layers with a hydrophilic, primarily hydroxyl-terminated surface. A variety of cations, including Na+, K+, NH4+, Mg2+, and Al3+, can also be intercalated electrochemically, offering capacitance in excess of 300 farads per cubic centimeter (much higher than that of porous carbons). This study provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions.


Journal of the American Chemical Society | 2013

New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries.

Michael Naguib; Joseph Halim; Jun Lu; Kevin M. Cook; Lars Hultman; Yury Gogotsi; Michel W. Barsoum

New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2AlC and V2AlC, respectively. These new matrials are promising electrode materials for Li-ion batteries, demonstrating good capability to handle high charge-discharge rates. Reversible capacities of 170 and 260 mA·h·g(-1) at 1 C, and 110 and 125 mA·h·g(-1) at 10 C were obtained for Nb2C and V2C-based electrodes, respectively.


Journal of the American Chemical Society | 2014

Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides

Yu Xie; Michael Naguib; Vadym Mochalin; Michel W. Barsoum; Yury Gogotsi; Xiqian Yu; Kyung-Wan Nam; Xiao-Qing Yang; Alexander I. Kolesnikov; Paul R. C. Kent

A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti3C2, V2C, Cr2C, and Nb2C. The Li-ion storage capacities are found to strongly depend on the nature of the surface functional groups, with O groups exhibiting the highest theoretical Li-ion storage capacities. MXene surfaces can be initially covered with OH groups, removable by high-temperature treatment or by reactions in the first lithiation cycle. This was verified by annealing f-Nb2C and f-Ti3C2 at 673 and 773 K in vacuum for 40 h and in situ X-ray adsorption spectroscopy (XAS) and Li capacity measurements for the first lithiation/delithiation cycle of f-Ti3C2. The high-temperature removal of water and OH was confirmed using X-ray diffraction and inelastic neutron scattering. The voltage profile and X-ray adsorption near edge structure of f-Ti3C2 revealed surface reactions in the first lithiation cycle. Moreover, lithiated oxygen terminated MXenes surfaces are able to adsorb additional Li beyond a monolayer, providing a mechanism to substantially increase capacity, as observed mainly in delaminated MXenes and confirmed by DFT calculations and XAS. The calculated Li diffusion barriers are low, indicative of the measured high-rate performance. We predict the not yet synthesized Cr2C to possess high Li capacity due to the low activation energy of water formation at high temperature, while the not yet synthesized Sc2C is predicted to potentially display low Li capacity due to higher reaction barriers for OH removal.


Advanced Materials | 2015

Flexible MXene/Carbon nanotube Composite Paper with High Volumetric Capacitance

Meng-Qiang Zhao; Chang E. Ren; Zheng Ling; Maria R. Lukatskaya; Chuanfang Zhang; Katherine L. Van Aken; Michel W. Barsoum; Yury Gogotsi

Free-standing and flexible sandwich-like MXene/carbon nanotube (CNT) paper, composed of alternating MXene and CNT layers, is fabricated using a simple filtration method. These sandwich-like papers exhibit high volumetric capacitances, good rate performances, and excellent cycling stability when employed as electrodes in supercapacitors.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Flexible and conductive MXene films and nanocomposites with high capacitance

Zheng Ling; Chang E. Ren; Meng-Qiang Zhao; Jian Yang; James M. Giammarco; Jieshan Qiu; Michel W. Barsoum; Yury Gogotsi

Significance Two-dimensional transition metal carbides (MXenes) offer a quite unique combination of excellent mechanical properties, hydrophilic surfaces, and metallic conductivity. In this first report (to our knowledge) on MXene composites of any kind, we show that adding polymer binders/spacers between atomically thin MXenes layers or reinforcing polymers with MXenes results in composite films that have excellent flexibility, good tensile and compressive strengths, and electrical conductivity that can be adjusted over a wide range. The volumetric capacitances of freestanding Ti3C2Tx MXene and its composite films exceed all previously published results. Owing to their mechanical strength and impressive capacitive performance, these films have the potential to be used for structural energy storage devices, electrochemical actuators, radiofrequency shielding, among other applications. MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein, Ti3C2Tx MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2Tx/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 104 S/m in the case of the Ti3C2Tx/PVA composite film and 2.4 × 105 S/m for pure Ti3C2Tx films. The tensile strength of the Ti3C2Tx/PVA composites was significantly enhanced compared with pure Ti3C2Tx or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ∼530 F/cm3 for MXene/PVA-KOH composite film at 2 mV/s. To our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few.


Journal of The Electrochemical Society | 1997

Oxidation Of Ti3SiC2 in Air

Michel W. Barsoum; T. El-Raghy; Linus U. J. T. Ogbuji

Polycrystalline samples of Ti{sub 3}SiC{sub 2} were oxidized in air in the 900 to 1,400 C temperature range. The oxidation was parabolic with parabolic rate constants, k{sub p}, that increased from 1 {times} 10{sup {minus}9} to 1 {times} 10{sup {minus}4} kg{sup 2}/m{sup 4}s as the temperature increased from 900 to 1,400 C, respectively, which yielded an activation energy of 370 {+-} 20 kJ/mol. The scale that forms was dense, adhesive, resistant to thermal cyclings and layered. The outer layer was pure TiO{sub 2} (rutile), and the inner layer consisted of mixture of SiO{sub 2} and TiO{sub 2}. The results are consistent with a model in which growth of the oxide layer occurs by the inward diffusion of oxygen and the simultaneous outward diffusion of titanium and carbon. The presence of small volume fractions ({approx} 2%) of TiC{sub x} in Ti{sub 3}SiC{sub 2} were found to have a deleterious effect on the oxidation kinetics.


ACS Nano | 2014

Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries.

Yu Xie; Yohan Dall’Agnese; Michael Naguib; Yury Gogotsi; Michel W. Barsoum; Houlong L. Zhuang; Paul R. C. Kent

Rechargeable non-lithium-ion (Na(+), K(+), Mg(2+), Ca(2+), and Al(3+)) batteries have attracted great attention as emerging low-cost and high energy-density technologies for large-scale renewable energy storage applications. However, the development of these batteries is hindered by the limited choice of high-performance electrode materials. In this work, MXene nanosheets, a class of two-dimensional transition-metal carbides, are predicted to serve as high-performing anodes for non-lithium-ion batteries by combined first-principles simulations and experimental measurements. Both O-terminated and bare MXenes are shown to be promising anode materials with high capacities and good rate capabilities, while bare MXenes show better performance. Our experiments clearly demonstrate the feasibility of Na- and K-ion intercalation into terminated MXenes. Moreover, stable multilayer adsorption is predicted for Mg and Al, which significantly increases their theoretical capacities. We also show that O-terminated MXenes can decompose into bare MXenes and metal oxides when in contact with Mg, Ca, or Al. Our results provide insight into metal ion storage mechanisms on two-dimensional materials and suggest a route to preparing bare MXene nanosheets.


Chemistry of Materials | 2014

Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films

Joseph Halim; Maria R. Lukatskaya; Kevin M. Cook; Jun Lu; Cole R. Smith; Lars-Åke Näslund; Steven J. May; Lars Hultman; Yury Gogotsi; Per Eklund; Michel W. Barsoum

Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of ∼1 × 1 cm2 Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit ∼90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to ∼100 K. Below 100 K, the films’ resistivity increases with decreasing temperature and they exhibit negative magnetoresistance—both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications.


Advanced Materials | 2015

Amine‐Assisted Delamination of Nb2C MXene for Li‐Ion Energy Storage Devices

Olha Mashtalir; Maria R. Lukatskaya; Meng-Qiang Zhao; Michel W. Barsoum; Yury Gogotsi

2D Nb2CTx MXene flakes are produced using an amine-assisted delamination process. Upon mixing with carbon nanotubes and filtration, freestanding, flexible paper is produced. The latter exhibits high capacity and excellent stability when used as the electrode for Li-ion batteries and capacitors.

Collaboration


Dive into the Michel W. Barsoum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Naguib

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Lu

Linköping University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge