Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michel-Yves Mistou is active.

Publication


Featured researches published by Michel-Yves Mistou.


Journal of Experimental Medicine | 2010

The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates

Asmaa Tazi; Olivier Disson; Samuel Bellais; Abdelouhab Bouaboud; Nicolas Dmytruk; Shaynoor Dramsi; Michel-Yves Mistou; Huot Khun; Charlotte Mechler; Isabelle Tardieux; Patrick Trieu-Cuot; Marc Lecuit; Claire Poyart

Lethal meningitis triggered by the hypervirulent group B streptococcus clone ST-17 is mediated by a novel surface protein called HvgA.


International Journal of Food Microbiology | 2000

Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress

Alain Guillot; David Obis; Michel-Yves Mistou

Lactococcus lactis subsp. cremoris NCDO763 accumulates glycine-betaine (betaine) when submitted to an osmotic stress with NaCl. Betaine transport activity increases with the extent of the osmotic upshock but also with growth temperature, and supplementation of the medium by Tween-80. Fatty acid analysis of the lipid fraction of L. lactis NCDO763 reveals significant modifications of the fatty acid composition of the membrane when cells are submitted to osmotic stress, high temperature or Tween-80 medium supplementation. The main modification in L. lactis membrane fatty acid composition in response to high osmolality is the increase of Cyclopropane Fatty Acid (CFA) deltaC19:0, whereas Unsaturated/Saturated ratio remains unchanged.


Journal of Biological Chemistry | 2010

Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle

Marie-Pierre Chapot-Chartier; Evgeny Vinogradov; Irina Sadovskaya; Guillaume Andre; Michel-Yves Mistou; Patrick Trieu-Cuot; Sylviane Furlan; Elena Bidnenko; Pascal Courtin; Christine Péchoux; Pascal Hols; Yves F. Dufrêne; Saulius Kulakauskas

In Gram-positive bacteria, the functional role of surface polysaccharides (PS) that are not of capsular nature remains poorly understood. Here, we report the presence of a novel cell wall PS pellicle on the surface of Lactococcus lactis. Spontaneous PS-negative mutants were selected using semi-liquid growth conditions, and all mutations were mapped in a single chromosomal locus coding for PS biosynthesis. PS molecules were shown to be composed of hexasaccharide phosphate repeating units that are distinct from other bacterial PS. Using complementary atomic force and transmission electron microscopy techniques, we showed that the PS layer forms an outer pellicle surrounding the cell. Notably, we found that this cell wall layer confers a protective barrier against host phagocytosis by murine macrophages. Altogether, our results suggest that the PS pellicle could represent a new cell envelope structural component of Gram-positive bacteria.


Journal of Chromatography B | 2002

Lactic acid bacteria and proteomics: current knowledge and perspectives.

Marie-Christine Champomier-Vergès; Emmanuelle Maguin; Michel-Yves Mistou; Patricia Anglade; Jean-François Chich

Lactic acid bacteria (LAB) are widely used in the agro-food industry. Some of the LAB also participate in the natural flora in humans and animals. We review here proteomic studies concerning LAB. Two methods of research can be distinguished. In the first one, a systematic mapping of proteins is attempted, which will be useful for taxonomy and to function assignment of proteins. The second one focuses particularly on proteins whose synthesis is induced by various environmental situations or stresses. However, both approaches are complementary and will give new insights for the use of bacteria in industry, in human health and in the struggle against bacterial pathogens. Interest in LAB is growing, showing thus an increasing concern of their rational use and one can foresee in the near future an increasing use of proteomics as well as genomics.


Journal of Bacteriology | 2009

Molecular Dissection of the secA2 Locus of Group B Streptococcus Reveals that Glycosylation of the Srr1 LPXTG Protein Is Required for Full Virulence

Michel-Yves Mistou; Shaynoor Dramsi; Sara Brega; Claire Poyart; Patrick Trieu-Cuot

In streptococci, the secA2 locus includes genes encoding the following: (i) the accessory Sec components (SecA2, SecY2, and at least three accessory secretion proteins), (ii) two essential glycosyltranferases (GTs) (GtfA and GtfB), (iii) a variable number of dispensable additional GTs, and (iv) a secreted serine-rich LPXTG protein which is glycosylated in the cytoplasm and transported to the cell surface by this accessory Sec system. The secA2 locus of Streptococcus agalactiae strain NEM316 is structurally related to those found in other streptococci and encodes the serine-rich surface protein Srr1. We demonstrated that expression of Srr1 but not that of the SecA2 components and the associated GTs is regulated by the standalone transcriptional regulator Rga. Srr1 is synthesized as a glycosylated precursor, secreted by the SecA2 system, and anchored to the cell wall by the housekeeping sortase A. Srr1 was localized preferentially at the old poles. GtfA and/or GtfB, but not the six additional GTs, is essential for the production of Srr1. These GTs are involved in the attachment of GlcNac and sialic acid to Srr1. Full glycosylation of Srr1 is associated with the cell surface display of a protein that is more resistant to proteolytic attack. Srr1 contributes to bacterial adherence to human epithelial cell lines and virulence in a neonatal rat model. The extent of Srr1 glycosylation by GtfC to -H modulates bacterial adherence and virulence.


Journal of Bacteriology | 2004

Proteome Analyses of Heme-Dependent Respiration in Lactococcus lactis: Involvement of the Proteolytic System

Karin Vido; Dominique le Bars; Michel-Yves Mistou; Patricia Anglade; Alexandra Gruss; Philippe Gaudu

Sugar fermentation was long considered the sole means of energy metabolism available to lactic acid bacteria. We recently showed that metabolism of Lactococcus lactis shifts progressively from fermentation to respiration during growth when oxygen and heme are available. To provide insights into this phenomenon, we compared the proteomic profiles of L. lactis under fermentative and respiratory growth conditions in rich medium. We identified 21 proteins whose levels differed significantly between these conditions. Two major groups of proteins were distinguished, one involved in carbon metabolism and the second in nitrogen metabolism. Unexpectedly, enzymes of the proteolytic system (PepO1 and PepC) which are repressed in rich medium in fermentation growth were induced under respiratory conditions despite the availability of free amino acids. A triple mutant (dtpT dtpP oppA) deficient in oligopeptide transport displayed normal respiration, showing that increased proteolytic activity is not an absolute requirement for respiratory metabolism. Transcriptional analysis confirmed that pepO1 is induced under respiration-permissive conditions. This induction was independent of CodY, the major regulator of proteolytic functions in L. lactis. We also observed that pepO1 induction is redox sensitive. In a codY mutant, pepO1 expression was increased twofold in aeration and eightfold in respiration-permissive conditions compared to static conditions. These observations suggest that new regulators activate proteolysis in L. lactis, which help to maintain the energetic needs of L. lactis during respiration.


Applied and Environmental Microbiology | 2005

Proteomic Signature of Lactococcus lactis NCDO763 Cultivated in Milk

Christophe Gitton; Mickael Meyrand; Juhui Wang; Christophe Caron; Alain Trubuil; Alain Guillot; Michel-Yves Mistou

ABSTRACT We have compared the proteomic profiles of L. lactis subsp. cremoris NCDO763 growing in the synthetic medium M17Lac, skim milk microfiltrate (SMM), and skim milk. SMM was used as a simple model medium to reproduce the initial phase of growth of L. lactis in milk. To widen the analysis of the cytoplasmic proteome, we used two different gel systems (pH ranges of 4 to 7 and 4.5 to 5.5), and the proteins associated with the cell envelopes were also studied by two-dimensional electrophoresis. In the course of the study, we analyzed about 800 spots and identified 330 proteins by mass spectrometry. We observed that the levels of more than 50 and 30 proteins were significantly increased upon growth in SMM and milk, respectively. The large redeployment of protein synthesis was essentially associated with an activation of pathways involved in the metabolism of nitrogenous compounds: peptidolytic and peptide transport systems, amino acid biosynthesis and interconversion, and de novo biosynthesis of purines. We also showed that enzymes involved in reactions feeding the purine biosynthetic pathway in one-carbon units and amino acids have an increased level in SMM and milk. The analysis of the proteomic data suggested that the glutamine synthetase (GS) would play a pivotal role in the adaptation to SMM and milk. The analysis of glnA expression during growth in milk and the construction of a glnA-defective mutant confirmed that GS is an essential enzyme for the development of L. lactis in dairy media. This analysis thus provides a proteomic signature of L. lactis, a model lactic acid bacterium, growing in its technological environment.


Applied and Environmental Microbiology | 2005

Proteome analysis of Streptococcus thermophilus grown in milk reveals pyruvate formate-lyase as the major upregulated protein.

Sylviane Derzelle; Alexander Bolotin; Michel-Yves Mistou; Françoise Rul

ABSTRACT We investigated the adaptation to milk of Streptococcus thermophilus LMG18311 using a proteomic approach. Two-dimensional electrophoresis of cytosolic proteins were performed after growth in M17 medium or in milk. A major modification of the proteome concerned proteins involved in the supply of amino acids, like the peptidase PepX, and several enzymes involved in amino acid biosynthesis. In parallel, we observed the upregulation of the synthesis of seven enzymes directly involved in the synthesis of purines, as well as formyl-tetrahydrofolate (THF) synthetase and serine hydroxy-methyl transferase, two enzymes responsible for the synthesis of compounds (THF and glycine, respectively) feeding the purine biosynthetic pathway. The analysis also revealed a massive increase in the synthesis of pyruvate formate-lyase (PFL), the enzyme which converts pyruvate into acetyl coenzyme A and formate. PFL has been essentially studied for its role in mixed-acid product formation in lactic acid bacteria during anaerobic fermentation. However, formate is an important methyl group donor for anabolic pathway through the formation of folate derivates. We hypothesized that PFL was involved in purine biosynthesis during growth in milk. We showed that PFL expression was regulated at the transcriptional level and that pfl transcription occurred during the exponential growth phase in milk. The complementation of milk with formate or purine bases was shown to reduce pfl expression, to suppress PFL synthesis, and to stimulate growth of S. thermophilus. These results show a novel regulatory mechanism controlling the synthesis of PFL and suggest an unrecognized physiological role for PFL as a formate supplier for anabolic purposes.


Journal of Bacteriology | 2004

The Chemical Chaperone Proline Relieves the Thermosensitivity of a dnaK Deletion Mutant at 42°C

Madhab K. Chattopadhyay; Renée Kern; Michel-Yves Mistou; Abhaya M. Dandekar; Sandra L. Uratsu; Gilbert Richarme

Since, like other osmolytes, proline can act as a protein stabilizer, we investigated the thermoprotectant properties of proline in vitro and in vivo. In vivo, elevated proline pools in Escherichia coli (obtained by altering the feedback inhibition by proline of γ-glutamylkinase, the first enzyme of the proline biosynthesis pathway) restore the viability of a dnaK-deficient mutant at 42°C, suggesting that proline can act as a thermoprotectant for E. coli cells. Furthermore, analysis of aggregated proteins in the dnaK-deficient strain at 42°C by two-dimensional gel electrophoresis shows that high proline pools reduce the protein aggregation defect of the dnaK-deficient strain. In vitro, like other “chemical chaperones,” and like the DnaK chaperone, proline protects citrate synthase against thermodenaturation and stimulates citrate synthase renaturation after urea denaturation. These results show that a protein aggregation defect can be compensated for by a single mutation in an amino acid biosynthetic pathway and that an ubiquitously producible chemical chaperone can compensate for a defect in one of the major chaperones involved in protein folding and aggregation.


Journal of Immunology | 2010

Mycobacterium bovis Bacillus Calmette-Guérin Vaccination Mobilizes Innate Myeloid-Derived Suppressor Cells Restraining In Vivo T Cell Priming Via IL-1R–Dependent Nitric Oxide Production

Angelo Martino; Edgar Badell; Valérie Abadie; Viviane Balloy; Michel-Yves Mistou; Béhazine Combadière; Christophe Combadière; Nathalie Winter

Early immune response to the largely used Mycobacterium bovis bacillus Calmette-Guérin (BCG) intradermal vaccine remains ill defined. Three days after BCG inoculation into the mouse ear, in addition to neutrophils infiltrating skin, we observed CD11b+Ly-6CintLy-6G− myeloid cells. Neutrophil depletion markedly enhanced their recruitment. These cells differed from inflammatory monocytes and required MyD88-dependent BCG-specific signals to invade skin, whereas neutrophil influx was MyD88 independent. Upon BCG phagocytosis, CD11b+Ly-6CintLy-6G− cells produced NO, which required the IL-1 receptor. Despite NO production, they were unable to kill BCG or the nonpathogenic Mycobacterium smegmatis. However, they markedly impaired T cell priming in the draining lymph node. Their elimination by all-trans retinoid acid treatment increased the number of IFN-γ–producing CD4 T cells. Thus, BCG vaccination recruits innate myeloid-derived suppressor cells, akin to mouse tumor-infiltrating cells. These propathogenic cells dampen the early T cell response and might facilitate BCG persistence.

Collaboration


Dive into the Michel-Yves Mistou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Guillot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Gitton

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patricia Anglade

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Trubuil

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Péchoux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Caron

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

David Obis

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Claude Gripon

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge