Michela Campagna
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michela Campagna.
Journal of Virology | 2009
Laura Marcos-Villar; Fernando Lopitz-Otsoa; Pedro Gallego; César Muñoz-Fontela; José González-Santamaría; Michela Campagna; Gao Shou-Jiang; Manuel Sánchez Rodríguez; Carmen Rivas
ABSTRACT Infection by herpesviruses causes a dramatic disturbance of PML oncogenic domains (PODs) that has been suggested to be essential for viral lytic replication. Several proteins from Kaposis sarcoma-associated herpesvirus (KSHV) have been tested as putative POD-disrupting factors with negative results. Here, we show that LANA2, a viral protein that is absolutely required for the viability and proliferation of KSHV-infected primary effusion lymphoma (PEL) cells, increases the levels of SUMO2-ubiquitin-modified PML and induces the disruption of PODs by a proteasome-mediated mechanism. In addition, we demonstrate that this disruption is largely dependent on both the integrity of a SUMO interaction motif in LANA2 and the lysine 160 from PML. Moreover, silencing of LANA2 expression in PEL cells by RNA interference led to an increase in the PML levels. Finally, we demonstrate that LANA2 relieves PML-mediated transcriptional repression of survivin, a protein that directly contributes to malignant progression of PEL. This represents the first example of inactivation of these important antiviral structures by KSHV.
Biochemical Society Transactions | 2010
Michela Campagna; Carmen Rivas
Resveratrol is a natural compound produced by certain plants on various stimuli. In recent years, extensive research on resveratrol has been carried out, demonstrating its capacity to prevent a wide variety of conditions, including cardiovascular diseases and cancer, and to control fungal, bacterial and viral infections. In the present review, we summarize the current knowledge of the activity of resveratrol against viral infection and describe the possible molecular pathways through which resveratrol exerts its antiviral activity.
Journal of Virology | 2007
Francesca Arnoldi; Michela Campagna; Catherine Eichwald; U. Desselberger; Oscar R. Burrone
ABSTRACT Rotavirus morphogenesis starts in intracellular inclusion bodies called viroplasms. RNA replication and packaging are mediated by several viral proteins, of which VP1, the RNA-dependent RNA polymerase, and VP2, the core scaffolding protein, were shown to be sufficient to provide replicase activity in vitro. In vivo, however, viral replication complexes also contain the nonstructural proteins NSP2 and NSP5, which were shown to be essential for replication, to interact with each other, and to form viroplasm-like structures (VLS) when coexpressed in uninfected cells. In order to gain a better understanding of the intermediates formed during viral replication, this work focused on the interactions of NSP5 with VP1, VP2, and NSP2. We demonstrated a strong interaction of VP1 with NSP5 but only a weak one with NSP2 in cotransfected cells in the absence of other viral proteins or viral RNA. By contrast, we failed to coimmunoprecipitate VP2 with anti-NSP5 antibodies or NSP5 with anti-VP2 antibodies. We constructed a tagged form of VP1, which was found to colocalize in viroplasms and in VLS formed by NSP5 and NSP2. The tagged VP1 was able to replace VP1 structurally by being incorporated into progeny viral particles. When applying anti-tag-VP1 or anti-NSP5 antibodies, coimmunoprecipitation of tagged VP1 with NSP5 was found. Using deletion mutants of NSP5 or different fragments of NSP5 fused to enhanced green fluorescent protein, we identified the 48 C-terminal amino acids as the region essential for interaction with VP1.
Cell Death & Differentiation | 2011
Michela Campagna; Daniel Herranz; María A García; Laura Marcos-Villar; José González-Santamaría; Pedro Gallego; Sylvia Gutiérrez; Manuel Collado; Manuel Serrano; Mariano Esteban; Carmen Rivas
SIRT1, the closest mammalian homolog of yeast Sir2, is an NAD+-dependent deacetylase with relevant functions in cancer, aging, and metabolism among other processes. SIRT1 has a diffuse nuclear localization but is recruited to the PML nuclear bodies (PML-NBs) after PML upregulation. However, the functions of SIRT1 in the PML-NBs are unknown. In this study we show that primary mouse embryo fibroblasts lacking SIRT1 contain reduced PML protein levels that are increased after reintroduction of SIRT1. In addition, overexpression of SIRT1 in HEK-293 cells increases the amount of PML protein whereas knockdown of SIRT1 reduces the size and number of PML-NBs and the levels of PML protein in HeLa cells. SIRT1 stimulates PML sumoylation in vitro and in vivo in a deacetylase-independent manner. Importantly, the absence of SIRT1 reduces the apoptotic response of vesicular stomatitis virus-infected cells and favors the extent of this PML-sensitive virus replication. These results show a novel function of SIRT1 in the control of PML and PML-NBs.
Cell Death and Disease | 2012
José González-Santamaría; Michela Campagna; Ana Ortega-Molina; Laura Marcos-Villar; C F de la Cruz-Herrera; Dolores González; Pedro Gallego; Fernando Lopitz-Otsoa; Mariano Esteban; Manuel Sánchez Rodríguez; Manuel Serrano; Carmen Rivas
The crucial function of the PTEN tumor suppressor in multiple cellular processes suggests that its activity must be tightly controlled. Both, membrane association and a variety of post-translational modifications, such as acetylation, phosphorylation, and mono- and polyubiquitination, have been reported to regulate PTEN activity. Here, we demonstrated that PTEN is also post-translationally modified by the small ubiquitin-like proteins, small ubiquitin-related modifier 1 (SUMO1) and SUMO2. We identified lysine residue 266 and the major monoubiquitination site 289, both located within the C2 domain required for PTEN membrane association, as SUMO acceptors in PTEN. We demonstrated the existence of a crosstalk between PTEN SUMOylation and ubiquitination, with PTEN-SUMO1 showing a reduced capacity to form covalent interactions with monoubiquitin and accumulation of PTEN-SUMO2 conjugates after inhibition of the proteasome. Moreover, we found that virus infection induces PTEN SUMOylation and favors PTEN localization at the cell membrane. Finally, we demonstrated that SUMOylation contributes to the control of virus infection by PTEN.
Journal of General Virology | 2011
Laura Marcos-Villar; Michela Campagna; Fernando Lopitz-Otsoa; Pedro Gallego; José González-Santamaría; Dolores González; Manuel Rodríguez; Carmen Rivas
The multifunctional Kaposis sarcoma-associated herpesvirus (KSHV) latent protein latency-associated nuclear antigen 2 (LANA2) has a critical role in KSHV-induced B-cell malignancies. LANA2 increases the level of small ubiquitin-like modifier (SUMO)2-ubiquitin-modified PML and induces the disruption of PML oncogenic domains (PODs) by a process that requires a non-covalent SUMO interaction domain (SIM) in LANA2. We now demonstrate that LANA2 is covalently conjugated to SUMO1 and SUMO2 both in vitro and in latently KSHV-infected B-cells. We show that a LANA2 SIM mutant exhibits a slightly altered sumoylation pattern, which suggests that non-covalent SUMO interactions represent a mechanism for determining SUMO substrate recognition and modification. In addition, several lysine residues were mapped as SUMO conjugation sites. A sumoylation-deficient mutant shows impaired ability to induce disruption of PODs, which suggests that either directly bound or covalently conjugated SUMO moieties may act as a bridge for interaction between LANA2 and other SUMO-modified or SUMO-interacting proteins required for disruption of PODs.
Cell Cycle | 2011
César Muñoz-Fontela; Dolores González; Laura Marcos-Villar; Michela Campagna; Pedro Gallego; José González-Santamaría; Daniel Herranz; Wei Gu; Manuel Serrano; Stuart A. Aaronson; Carmen Rivas
Tumor suppressor p53 is known to be a direct transcriptional target of type I interferons (IFNs), contributing to virus-induced apoptosis, and in turn activating itself the interferon pathway. Acetylation, among many other post-translational modifications of p53, is thought to exert a crucial role regulating p53 activity. Here, we examined the contribution of this modification on the antiviral activity mediated by p53. Our results show that virus infection induces p53 acetylation at lysine 379, and that this modification is absolutely required for p53-dependent transcriptional transactivation of both, pro-apoptotic and IFN-stimulated genes induced by virus infection, and for p53-mediated control of virus replication. Thus, our study identifies p53 acetylation as an indispensable event that enables the p53-mediated antiviral response.
PLOS ONE | 2009
María A García; Pedro Gallego; Michela Campagna; José González-Santamaría; Gloria Martínez; Laura Marcos-Villar; Anxo Vidal; Mariano Esteban; Carmen Rivas
The retinoblastoma protein Rb is a tumor suppressor involved in cell cycle control, differentiation, and inhibition of oncogenic transformation. Besides these roles, additional functions in the control of immune response have been suggested. In the present study we investigated the consequences of loss of Rb in viral infection. Here we show that virus replication is increased by the absence of Rb, and that Rb is required for the activation of the NF-kB pathway in response to virus infection. These results reveal a novel role for tumor suppressor Rb in viral infection surveillance and further extend the concept of a link between tumor suppressors and antiviral activity.
Journal of Virology | 2011
José González-Santamaría; Michela Campagna; María A García; Laura Marcos-Villar; Dolores González; Pedro Gallego; Fernando Lopitz-Otsoa; Susana Guerra; Manuel Rodríguez; Mariano Esteban; Carmen Rivas
ABSTRACT The vaccinia virus (VACV) E3 protein is essential for virulence and has antiapoptotic activity and the ability to impair the host innate immune response. Here we demonstrate that E3 interacts with SUMO1 through a small ubiquitin-like modifier (SUMO)-interacting motif (SIM). SIM integrity is required for maintaining the stability of the viral protein and for the covalent conjugation of E3 to SUMO1 or SUMO2, a modification that has a negative effect on the E3 transcriptional transactivation of the p53-upregulated modulator of apoptosis (PUMA) and APAF-1 genes. We also demonstrate that E3 is ubiquitinated, a modification that does not destabilize the wild-type protein but triggers the degradation of an E3-ΔSIM mutant. This report constitutes the first demonstration of the important roles that both SUMO and ubiquitin play in the regulation of the VACV protein E3.
PLOS ONE | 2011
Elisa Da Silva-Ferrada; Mónica Torres-Ramos; Fabienne Aillet; Michela Campagna; Carlos Matute; Carmen Rivas; Manuel Rodríguez; Valérie Lang
The NF-κB pathway is regulated by multiple post-translational modifications including phosphorylation, ubiquitylation and SUMOylation. Many of these modifications act on the natural inhibitor IκBα modulating its capacity to control signal-mediated NF-κB activity. While the canonical pathway involving the phosphorylation and polyubiquitylation of IκBα has been well characterized, the role of these post-translational modifications in the control of basal NF-κB activity has not been deeply explored. Using the recently developed Tandem-repeated Ubiquitin Binding Entities (also known as ubiquitin traps) to capture ubiquitylated proteins, we identified monoubiquitylated forms of IκBα from multiple rat organs and cell types. The identification of these forms was demonstrated through different procedures such as immunoprecipitations with specific ubiquitin antibodies or His6-Ubiquitin pull downs. Monoubiquitylated forms of IκBα are resistant to TNFα-mediated degradation and can be captured using TUBEs, even after proteasome inhibitors treatment. As it occurs for monoSUMOylation, monoubiquitylation is not dependent of the phosphorylation of IκBα on the serines 32/36 and is not optimally degraded after TNFα stimulation. A ubiquitin-IκBα fusion exhibits phosphorylation defects and resistance to TNFα mediated degradation similar to the ones observed for endogenous monoubiquitylated IκBα. The N-terminal attachment of a single ubiquitin moiety on the IκBα fusion results in a deficient binding to the IKKβ kinase and recruitment of the SCF ligase component βTrCP, promoting a negative impact on the NF-κB activity. Altogether, our results suggest the existence of a reservoir of monoubiquitylated IκBα resistant to TNFα-induced proteolysis, which is able to interact and repress DNA binding and NF-κB transcriptional activity. Such pool of IκBα may play an important role in the control of basal and signal-mediated NF-κB activity.
Collaboration
Dive into the Michela Campagna's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputs