Michela Maione
University of Urbino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michela Maione.
Environmental Science & Technology | 2012
Christoph A. Keller; Matthias Hill; Martin K. Vollmer; Stephan Henne; Dominik Brunner; Stefan Reimann; Simon O'Doherty; Jgor Arduini; Michela Maione; Zita Ferenczi; L. Haszpra; Alistair J. Manning; Thomas Peter
European emissions of nine representative halocarbons (CFC-11, CFC-12, Halon 1211, HCFC-141b, HCFC-142b, HCFC-22, HFC-125, HFC-134a, HFC-152a) are derived for the year 2009 by combining long-term observations in Switzerland, Italy, and Ireland with campaign measurements from Hungary. For the first time, halocarbon emissions over Eastern Europe are assessed by top-down methods, and these results are compared to Western European emissions. The employed inversion method builds on least-squares optimization linking atmospheric observations with calculations from the Lagrangian particle dispersion model FLEXPART. The aggregated halocarbon emissions over the study area are estimated at 125 (106-150) Tg of CO(2) equiv/y, of which the hydrofluorocarbons (HFCs) make up the most important fraction with 41% (31-52%). We find that chlorofluorocarbon (CFC) emissions from banks are still significant and account for 35% (27-43%) of total halocarbon emissions in Europe. The regional differences in per capita emissions are only small for the HFCs, while emissions of CFCs and hydrochlorofluorocarbons (HCFCs) tend to be higher in Western Europe compared to Eastern Europe. In total, the inferred per capita emissions are similar to estimates for China, but 3.5 (2.3-4.5) times lower than for the United States. Our study demonstrates the large benefits of adding a strategically well placed measurement site to the existing European observation network of halocarbons, as it extends the coverage of the inversion domain toward Eastern Europe and helps to better constrain the emissions over Central Europe.
Journal of Chromatography A | 2003
Giovanna Mangani; Arnaldo Berloni; Michela Maione
Anthropogenic volatile halocarbons are compounds of great enviromnental concern because of their involvement in global change phenomena. They are present in the atmosphere at concentration levels in the order of parts per trillion by volume. The chosen analytical method for their determination is capillary gas chromatography coupled to mass spectrometry, preceded by an enrichment step on suitable adsorbent resins. The method here presented makes use of the solid-phase microextraction as a pre-analytical technique, using sub-ambient temperature in order to enhance the retention capability of the fiber coating. The proposed method was evaluated in terms of extraction efficiency, linearity, reproducibility, andlimits of detection. Results obtained showed that trace atmospheric halocarbons are detectable even when enriching very small air sample volumes. A good chromatographic resolution is obtained as a consequence of the extremely low injection volume. Finally a standard GC-MS instrumentation equipped with a simple split-splitless injector was employed, thus avoiding the use of expensive dedicated apparatus. The method was also applied to the analysis of actual samples collected both in remote, and in semi-remote sites.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Mark F. Lunt; Matthew Rigby; Anita L. Ganesan; Alistair J. Manning; Ronald G. Prinn; S. O’Doherty; Jens Mühle; Christina M. Harth; P. K. Salameh; Tim Arnold; Ray F. Weiss; Takuya Saito; Yoko Yokouchi; P. B. Krummel; L. Paul Steele; P. J. Fraser; Shanlan Li; Sunyoung Park; Stefan Reimann; Martin K. Vollmer; C. Lunder; Ove Hermansen; Norbert Schmidbauer; Michela Maione; Jgor Arduini; Dickon Young; Peter G. Simmonds
Significance Hydrofluorocarbons (HFCs) are among the atmosphere’s fastest growing, and most potent, greenhouse gases. Proposals have been made to phase down their use over the coming decades. Such initiatives may largely be informed by existing emissions inventories, which, we show, are the subject of significant uncertainty. In this work, we use atmospheric models and measurements to examine the accuracy of these inventories for five major HFCs. We show that, when aggregated together, reported emissions of these HFCs from developed countries are consistent with the atmospheric measurements, and almost half of global emissions now originate from nonreporting countries. However, the agreement between our results and the inventory breaks down for individual HFC emissions, suggesting inaccuracies in the reporting methods for individual compounds. We infer global and regional emissions of five of the most abundant hydrofluorocarbons (HFCs) using atmospheric measurements from the Advanced Global Atmospheric Gases Experiment and the National Institute for Environmental Studies, Japan, networks. We find that the total CO2-equivalent emissions of the five HFCs from countries that are required to provide detailed, annual reports to the United Nations Framework Convention on Climate Change (UNFCCC) increased from 198 (175–221) Tg-CO2-eq⋅y–1 in 2007 to 275 (246–304) Tg-CO2-eq⋅y–1 in 2012. These global warming potential-weighted aggregated emissions agree well with those reported to the UNFCCC throughout this period and indicate that the gap between reported emissions and global HFC emissions derived from atmospheric trends is almost entirely due to emissions from nonreporting countries. However, our measurement-based estimates of individual HFC species suggest that emissions, from reporting countries, of the most abundant HFC, HFC-134a, were only 79% (63–95%) of the UNFCCC inventory total, while other HFC emissions were significantly greater than the reported values. These results suggest that there are inaccuracies in the reporting methods for individual HFCs, which appear to cancel when aggregated together.
Science of The Total Environment | 2013
Michela Maione; U. Giostra; Jgor Arduini; F. Furlani; Francesco Graziosi; E. Lo Vullo; Paolo Bonasoni
Halogenated gases potentially harmful to the stratospheric ozone layer are monitored worldwide in order to assess compliance with the Montreal Protocol requiring a phase out of these compounds on a global scale. We present the results of long term (2002-2011) continuous observation conducted at the Mt. Cimone GAW Global Station located on the highest peak of the Italian Northern Apennines, at the border of two important regions: the Po Valley (and the Alps) to the North and the Mediterranean Basin to the South. Bi-hourly air samples of CFC-12, CFC-11, CFC-114, CFC-115, H-1211, H-1301, methyl chloroform, carbon tetrachloride, HCFC-22, HCFC-142b, HCFC-124 and methyl bromide are collected and analysed using a gas chromatograph-mass spectrometer, providing multi annual time series. In order to appreciate the effectiveness of the Montreal Protocol from a regional perspective, trends and annual growth rates of halogenated species have been calculated after identification of their baseline values. A comparison with results from other international observation programmes is also presented. Our data show that the peak in the atmospheric mixing ratios of four chlorofluorocarbons, two halons and two chlorocarbons has been reached and all these species now show a negative atmospheric trend. Pollution episodes are still occurring for species like halon-1211, methyl chloroform and carbon tetrachloride, indicating fresh emissions from the site domain which could be ascribed both to fugitive un-reported uses of the compounds and/or emissions from banks. For the hydrofluorocarbons changes in the baseline are affected by emissions from fast developing Countries in East Asia. Fresh emissions from the site domain are clearly declining. Methyl bromide, for which the Mediterranean area is an important source region, shows, in a generally decreasing trend, an emission pattern that is not consistent with the phase-out schedule of this compound, with a renewed increase in the last two years of pollution episodes.
Atmospheric Environment | 2009
D. Fowler; K Pilegaard; Mark A. Sutton; Per Ambus; M Raivonen; J Duyzer; David Simpson; Hilde Fagerli; S. Fuzzi; Jan K. Schjoerring; C Granier; A. Neftel; Ivar S. A. Isaksen; P. Laj; Michela Maione; Paul S. Monks; Juergen Burkhardt; U. Daemmgen; Johan Neirynck; E Personne; R. Wichink-Kruit; Klaus Butterbach-Bahl; C Flechard; Juha-Pekka Tuovinen; Mhairi Coyle; Giacomo Alessandro Gerosa; Benjamin Loubet; N Altimir; L. Gruenhage; C Ammannl
Publisher Summary The coupling between climate change and atmospheric composition results from the basic structure of the Earth atmosphere climate system, and the fundamental processes within it. The composition of the atmosphere is determined by natural and human-related emissions, and the energy that flows into, out of, and within the atmosphere. Atmospheric composition influences climate by regulating the radiation budget. Potentially significant contributions to the climate impact are provided by compounds such as CO2, CH4, O3, particles, and cirrus clouds. For the chemically active gases, processes in the atmosphere are important, with large spatial and temporal variations. The climate–chemistry interactions are therefore characterized by significant regional differences with regions such as South East Asia being a future key region due to significant increases in energy use and pollution emission. Likewise, ship and air traffic represent important sectors because of significant increases in emissions in recent years. The relative contributions to the emissions from various sectors are expected to change significantly over the next few decades due to differences in mitigation options and costs.Chemically active climate compounds are either primary compounds like methane (CH4), removed by oxidation in the atmosphere, or secondary compounds like ozone (O-3), sulfate and organic aerosols, both formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds like O-3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds like O-3, and of particles inducing both direct and indirect effects. Through EU projects like ACCENT, QUANTIFY, and the AeroCom project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favoring pollution build up over industrial areas, enhanced temperature induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 5-10 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modeling of composition changes, access to new observational data has improved modeling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.
International Journal of Environmental Analytical Chemistry | 2004
Michela Maione; Jgor Arduini; Giovanna Mangani; Annalisa Geniali
Continuous monitoring of the atmospheric volatile halogenated hydrocarbons is needed in light of the role played by these compounds in global climate change phenomena. The analytical methodology described in the following implies the use of a gas chromatographic–mass spectrometric system equipped with a sampling/pre-concentration unit, for the simultaneous and continuous analysis of a number of halogenated hydrocarbons present in the atmosphere at concentration levels ranging from a few to hundreds of part per trillion by volume. The optimization of the analytical procedure in terms of efficiency, linearity, and reproducibility is reported together with some of the results obtained in the frame of a monitoring activity carried out on a remote mountain station in central Italy.
Journal of Geophysical Research | 2016
Martin K. Vollmer; Jens Mühle; Cathy M. Trudinger; Matthew Rigby; Stephen A. Montzka; Christina M. Harth; Benjamin R. Miller; Stephan Henne; P. B. Krummel; B. D. Hall; Dickon Young; Jooil Kim; Jgor Arduini; Angelina Wenger; Bo Yao; Stefan Reimann; Simon O'Doherty; Michela Maione; David M. Etheridge; Shanlan Li; D. Verdonik; Sunyoung Park; Geoff Dutton; L. Paul Steele; C. Lunder; T. S. Rhee; Ove Hermansen; Norbert Schmidbauer; Ray Wang; Matthias Hill
We report ground-based atmospheric measurements and emission estimates for the halons H-1211 (CBrClF₂), H-1301 (CBrF₃), and H-2402 (CBrF₂CBrF₂) from the AGAGE (Advanced Global Atmospheric Gases Experiment) and the National Oceanic and Atmospheric Administration global networks. We also include results from archived air samples in canisters and from polar firn in both hemispheres, thereby deriving an atmospheric record of nearly nine decades (1930s to present). All three halons were absent from the atmosphere until ~1970, when their atmospheric burdens started to increase rapidly. In recent years H-1211 and H-2402 mole fractions have been declining, but H-1301 has continued to grow. High-frequency observations show continuing emissions of H-1211 and H-1301 near most AGAGE sites. For H-2402 the only emissions detected were derived from the region surrounding the Sea of Japan/East Sea. Based on our observations, we derive global emissions using two different inversion approaches. Emissions for H-1211 declined from a peak of 11 kt yr⁻¹ (late 1990s) to 3.9 kt yr⁻¹ at the end of our record (mean of 2013–2015), for H-1301 from 5.4 kt yr⁻¹ (late 1980s) to 1.6 kt yr⁻¹, and for H-2402 from 1.8 kt yr⁻¹ (late 1980s) to 0.38 kt yr⁻¹. Yearly summed halon emissions have decreased substantially; nevertheless, since 2000 they have accounted for ~30% of the emissions of all major anthropogenic ozone depletion substances, when weighted by ozone depletion potentials.
Chromatographia | 1998
Filippo Mangani; L. Lattanzi; Michela Maione
SummaryA fast, simple, and reliable method is presented for the determination of atmospheric semi-volatile organic pollutants at μg m−3 levels. The method has been used to monitor potentially carcinogenic toxic compounds to which workers are exposed in workplaces, and to measure the same compounds in outdoor air.
Chromatographia | 2000
Filippo Mangani; Michela Maione; L. Lattanzi; J. Arduini
SummaryThe simultaneous determination of chlorofluorocarbons and their replacement compounds in ambient air samples requires the preconcentration of appropriate air volumes on suitable adsorbents. The performance of a dual-layer adsorption tube to be used in this type of analysis was evaluated in terms of breakthrough volumes (BTV) for the compounds of interest at ambient temperature. To verify the effectiveness of such adsorption tubes, real air samples were enriched at ambient temperature and were subsequently analyzed by capillary gas chromatography coupled with quadrupole mass spectrometry, operating in SIM mode. The results obtained confirmed the efficacy of the proposed method, in terms both of sensitivity and chromatographic separation efficiency.
Atmospheric Environment | 2000
Filippo Mangani; Michela Maione; Luciano Lattanzi; Jgor Arduini
Chlorofluorocarbons and their replacement compounds are anthropogenic compounds of great environmental concern. For this reason monitoring their atmospheric mixing ratios on a worldwide scale is recommended. An analytical methodology for the simultaneous determination of selected chlorofluorocarbons and their replacement compounds has recently been developed. This methodology was applied in the analysis of actual air samples collected in remote and semi-remote areas located in the Northern and Southern Hemispheres. The concentration levels measured in the air samples collected in the two hemispheres are reported.
Collaboration
Dive into the Michela Maione's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputs