Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michela Morbin is active.

Publication


Featured researches published by Michela Morbin.


Journal of Neuropathology and Experimental Neurology | 1999

Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau.

Orso Bugiani; Jill R. Murrell; Giorgio Giaccone; Masato Hasegawa; Giuseppe Ghigo; Massimo Tabaton; Michela Morbin; Alberto Primavera; Francesco Carella; Claudio Solaro; Marina Grisoli; Mario Savoiardo; Maria Grazia Spillantini; Fabrizio Tagliavini; Michel Goedert; Bernardino Ghetti

The tau gene has been found to be the locus of dementia with rigidity linked to chromosome 17. Exonic and intronic mutations have been described in a number of families. Here we describe a P301S mutation in exon 10 of the tau gene in a new family. Two members of this family were affected. One individual presented with frontotemporal dementia, whereas his son has corticobasal degeneration, demonstrating that the same primary gene defect in tau can lead to 2 distinct clinical phenotypes. Both individuals developed rapidly progressive disease in the third decade. Neuropathologically, the father presented with an extensive filamentous pathology made of hyperphosphorylated tau protein. Biochemically, recombinant tau protein with the P301S mutation showed a greatly reduced ability to promote microtubule assembly.


Science | 2009

A Recessive Mutation in the APP Gene with Dominant-Negative Effect on Amyloidogenesis

Giuseppe Di Fede; Marcella Catania; Michela Morbin; Giacomina Rossi; Silvia Suardi; Giulia Mazzoleni; Marco Merlin; Anna Rita Giovagnoli; Sara Prioni; Alessandra Erbetta; Chiara Falcone; Marco Gobbi; Laura Colombo; Antonio Bastone; Marten Beeg; Claudia Manzoni; Bruna Francescucci; Alberto Spagnoli; Laura Cantù; Elena Del Favero; Efrat Levy; Mario Salmona; Fabrizio Tagliavini

β-Amyloid precursor protein (APP) mutations cause familial Alzheimers disease with nearly complete penetrance. We found an APP mutation [alanine-673→valine-673 (A673V)] that causes disease only in the homozygous state, whereas heterozygous carriers were unaffected, consistent with a recessive Mendelian trait of inheritance. The A673V mutation affected APP processing, resulting in enhanced β-amyloid (Aβ) production and formation of amyloid fibrils in vitro. Co-incubation of mutated and wild-type peptides conferred instability on Aβ aggregates and inhibited amyloidogenesis and neurotoxicity. The highly amyloidogenic effect of the A673V mutation in the homozygous state and its anti-amyloidogenic effect in the heterozygous state account for the autosomal recessive pattern of inheritance and have implications for genetic screening and the potential treatment of Alzheimers disease.


American Journal of Human Genetics | 2012

Strikingly Different Clinicopathological Phenotypes Determined by Progranulin-Mutation Dosage

Katherine R. Smith; John A. Damiano; Silvana Franceschetti; Stirling Carpenter; Laura Canafoglia; Michela Morbin; Giacomina Rossi; Davide Pareyson; Sara E. Mole; John F. Staropoli; Katherine B. Sims; Jada Lewis; Wen Lang Lin; Dennis W. Dickson; Hans Henrik M Dahl; Melanie Bahlo; Samuel F. Berkovic

We performed hypothesis-free linkage analysis and exome sequencing in a family with two siblings who had neuronal ceroid lipofuscinosis (NCL). Two linkage peaks with maximum LOD scores of 3.07 and 2.97 were found on chromosomes 7 and 17, respectively. Unexpectedly, we found these siblings to be homozygous for a c.813_816del (p.Thr272Serfs∗10) mutation in the progranulin gene (GRN, granulin precursor) in the latter peak. Heterozygous mutations in GRN are a major cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), the second most common early-onset dementia. Reexamination of progranulin-deficient mice revealed rectilinear profiles typical of NCL. The age-at-onset and neuropathology of FTLD-TDP and NCL are markedly different. Our findings reveal an unanticipated link between a rare and a common neurological disorder and illustrate pleiotropic effects of a mutation in the heterozygous or homozygous states.


Neurology | 2003

Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies

Giuseppe Lauria; Michela Morbin; Raffaella Lombardi; Monica Borgna; Giulia Mazzoleni; Angelo Sghirlanzoni; Davide Pareyson

Objective: To correlate the density of swellings in intraepidermal nerve fibers (IENF) with the longitudinal measurement of the epidermal innervation density in patients with painful neuropathy and to assess the predictive value of IENF swelling to progression of neuropathy. Methods: Fifteen patients with persistent pain in the feet underwent neurologic examination, nerve conduction studies, quantitative sensory examination, and skin biopsies at proximal thigh and distal leg. In all patients and in 15 healthy subjects, IENF density and swelling ratio (no. swellings/no. IENF) were quantified at distal leg. Follow-up study, including IENF density and swelling ratio quantification, was performed a mean of 19.2 months later. Double staining confocal microscope studies using anti-human protein-gene-product 9.5, anti-tubule, anti-neurofilament, and anti-synaptophysin antibodies were performed to assess specific accumulation within swellings. Ultrastructural investigation of IENF was also carried out. Results: Patients with neuropathy had lower density of IENF and higher swelling ratio than healthy subjects (p < 0.01) at distal leg. At follow-up, patients showed a parallel decrease in both IENF density (p = 0.02) and swelling ratio (p = 0.002). However, swelling ratio remained higher (p = 0.03) than in controls. Progression of neuropathy was confirmed by the decay in sural nerve sensory nerve action potential amplitude. Double immunostaining studies suggest accumulation of tubules and ubiquitin-associated proteins within swellings. Swollen and vacuolated IENF were identified in patients with neuropathy by conventional and immuno-electron microscopy. Conclusions: Increased swelling ratio predicted the decrease in IENF density in patients with painful neuropathy. Its quantification could support earlier diagnosis of sensory axonopathy.


American Journal of Human Genetics | 2011

Kufs Disease, the Major Adult Form of Neuronal Ceroid Lipofuscinosis, Caused by Mutations in CLN6

Todor Arsov; Katherine R. Smith; John A. Damiano; Silvana Franceschetti; Laura Canafoglia; Catherine J. Bromhead; Eva Andermann; Danya F. Vears; Patrick Cossette; Sulekha Rajagopalan; Alan McDougall; Vito Sofia; Michael Farrell; Umberto Aguglia; Andrea Zini; Stefano Meletti; Michela Morbin; Saul A. Mullen; Frederick Andermann; Sara E. Mole; Melanie Bahlo; Samuel F. Berkovic

The molecular basis of Kufs disease is unknown, whereas a series of genes accounting for most of the childhood-onset forms of neuronal ceroid lipofuscinosis (NCL) have been identified. Diagnosis of Kufs disease is difficult because the characteristic lipopigment is largely confined to neurons and can require a brain biopsy or autopsy for final diagnosis. We mapped four families with Kufs disease for whom there was good evidence of autosomal-recessive inheritance and found two peaks on chromosome 15. Three of the families were affected by Kufs type A disease and presented with progressive myoclonus epilepsy, and one was affected by type B (presenting with dementia and motor system dysfunction). Sequencing of a candidate gene in one peak shared by all four families identified no mutations, but sequencing of CLN6, found in the second peak and shared by only the three families affected by Kufs type A disease, revealed pathogenic mutations in all three families. We subsequently sequenced CLN6 in eight other families, three of which were affected by recessive Kufs type A disease. Mutations in both CLN6 alleles were found in the three type A cases and in one family affected by unclassified Kufs disease. Mutations in CLN6 are the major cause of recessive Kufs type A disease. The phenotypic differences between variant late-infantile NCL, previously found to be caused by CLN6, and Kufs type A disease are striking; there is a much later age at onset and lack of visual involvement in the latter. Sequencing of CLN6 will provide a simple diagnostic strategy in this disorder, in which definitive identification usually requires invasive biopsy.


Journal of The Peripheral Nervous System | 2006

Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies

Giuseppe Lauria; Michela Morbin; Raffaella Lombardi; Raffaella Capobianco; Francesca Camozzi; Davide Pareyson; Mauro Manconi; Pierangelo Geppetti

Abstract  We describe the expression of the capsaicin receptor (TRPV1) in human peripheral nervous system (PNS) and its changes in sural nerve and skin nerve fibers of patients with painful neuropathy. Dorsal root ganglion (DRG), root, and spinal cord autopsy specimens from subjects without PNS diseases were immunoassayed with anti‐TRPV1 antibodies. Bright‐field and confocal microscope studies using anti‐TRPV1, protein gene product 9.5 (PGP 9.5), and unique‐β‐tubulin (TuJ1) antibodies were performed in skin biopsies from 15 healthy subjects and 10 painful neuropathies. The density of intraepidermal nerve fiber (IENF) labeled by each antibody was quantified. Sural nerve biopsies from three patients with painful, one patient with nonpainful diabetic neuropathy, and two patients with multifocal motor neuropathy used as controls were immunoassayed with anti‐TRPV1 antibodies and investigated by immunoelectron microscopy. TRPV1 strongly labeled laminae I and II of dorsal horns, most small‐size and some medium‐size DRG neurons, and small‐diameter axons of dorsal roots. In sural nerve, TRPV1 was expressed within the cytoplasm of most unmyelinated and some small myelinated axons, in the muscular lamina of epineural vessels, and in the endothelium of endoneurial vessels. The density of IENF labeled by TRPV1, PGP 9.5, and TuJ1 did not differ. TRPV1 colocalized with TuJ1 in all IENF and dermal nerve bundles. Painful neuropathies showed a diffuse loss of TRPV1‐positive axons both in the sural nerve and in the skin. Our findings demonstrated that TRPV1 is normally expressed throughout the nociceptive pathway of PNS and that TRPV1‐positive peripheral nerve fibers degenerate in painful neuropathies.


Annals of Neurology | 2005

IgM deposits on skin nerves in anti-myelin-associated glycoprotein neuropathy

Raffaella Lombardi; Beat Erne; Giuseppe Lauria; Davide Pareyson; Monica Borgna; Michela Morbin; Andreas Arnold; Adam Czaplinski; Peter Fuhr; Nicole Schaeren-Wiemers; Andreas J. Steck

Anti–myelin‐associated glycoprotein (anti‐MAG) neuropathy is a chronic demyelinating neuropathy with predominant involvement of large sensory fibers and deposits of IgM and complement on sural nerve myelinated fibers. We assessed the presence of IgM deposits on skin myelinated nerve fibers and the involvement of unmyelinated axons in anti‐MAG neuropathy. Skin biopsies were performed in 14 patients with anti‐MAG neuropathy, in 8 patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), and in 2 patients with IgM paraproteinemic neuropathy. Biopsies were taken at the proximal thigh in 20 patients, at the distal leg in 21 patients, at the proximal arm in 13 patients, and at the hand or fingertip in 10 patients. We found IgM deposits on dermal myelinated fibers in all anti‐MAG neuropathy patients, with a greater prevalence at the distal site of the extremities. Deposits were located throughout the length of the fibers and at the paranodal loops. CIDP and IgM paraproteinemic neuropathies did not show any deposit of IgM. Anti‐MAG neuropathy and CIPD patients showed a decrease in epidermal nerve fiber density reflecting an associated axonal loss. In anti‐MAG neuropathy, both large‐ and small‐diameter nerve fibers are affected, and specific deposits of IgM are found on skin myelinated nerve fibers. Ann Neurol 2005;57:180–187


Neuron | 2008

Mutant Prion Protein Expression Causes Motor and Memory Deficits and Abnormal Sleep Patterns in a Transgenic Mouse Model

Sara Dossena; Luca Imeri; Michela Mangieri; Anna Garofoli; Loris Ferrari; Assunta Senatore; Elena Restelli; Claudia Balducci; Fabio Fiordaliso; Monica Salio; Susanna Bianchi; Luana Fioriti; Michela Morbin; Alessandro Pincherle; Gabriella Marcon; Flavio Villani; Mirjana Carli; Fabrizio Tagliavini; Gianluigi Forloni; Roberto Chiesa

A familial form of Creutzfeldt-Jakob disease (CJD) is linked to the D178N/V129 prion protein (PrP) mutation. Tg(CJD) mice expressing the mouse homolog of this mutant PrP synthesize a misfolded form of the mutant protein, which is aggregated and protease resistant. These mice develop clinical and pathological features reminiscent of CJD, including motor dysfunction, memory impairment, cerebral PrP deposition, and gliosis. Tg(CJD) mice also display electroencephalographic abnormalities and severe alterations of sleep-wake patterns strikingly similar to those seen in a human patient carrying the D178N/V129 mutation. Neurons in these mice show swelling of the endoplasmic reticulum (ER) with intracellular retention of mutant PrP, suggesting that ER dysfunction could contribute to the pathology. These results establish a transgenic animal model of a genetic prion disease recapitulating cognitive, motor, and neurophysiological abnormalities of the human disorder. Tg(CJD) mice have the potential for giving greater insight into the spectrum of neuronal dysfunction in prion diseases.


Neurodegenerative Diseases | 2012

Optimal Plasma Progranulin Cutoff Value for Predicting Null Progranulin Mutations in Neurodegenerative Diseases: A Multicenter Italian Study

Roberta Ghidoni; Elena Stoppani; Giacomina Rossi; Elena Piccoli; Valentina Albertini; Anna Paterlini; Michela Glionna; Eleonora Pegoiani; Luigi F. Agnati; Chiara Fenoglio; Elio Scarpini; Daniela Galimberti; Michela Morbin; Fabrizio Tagliavini; Giuliano Binetti; Luisa Benussi

Background: Recently, attention was drawn to a role for progranulin in the central nervous system with the identification of mutations in the progranulin gene (GRN) as an important cause of frontotemporal lobar degeneration. GRN mutations are associated with a strong reduction of circulating progranulin and widely variable clinical phenotypes: thus, the dosage of plasma progranulin is a useful tool for a quick and inexpensive large-scale screening of carriers of GRN mutations. Objective: To establish the best cutoff threshold for normal versus abnormal levels of plasma progranulin. Methods: 309 cognitively healthy controls (25–87 years of age), 72 affected and unaffected GRN+ null mutation carriers (24–86 years of age), 3 affected GRN missense mutation carriers, 342 patients with neurodegenerative diseases and 293 subjects with mild cognitive impairment were enrolled at the Memory Clinic, IRCCS S. Giovanni di Dio-Fatebenefratelli, Brescia, Italy, and at the Alzheimer Unit, Ospedale Maggiore Policlinico and IRCCS Istituto Neurologico C. Besta, Milan, Italy. Plasma progranulin levels were measured using an ELISA kit (AdipoGen Inc., Seoul, Korea). Results: Plasma progranulin did not correlate with age, gender or body mass index. We established a new plasma progranulin protein cutoff level of 61.55 ng/ml that identifies, with a specificity of 99.6% and a sensitivity of 95.8%, null mutation carriers among subjects attending to a memory clinic. Affected and unaffected GRN null mutation carriers did not differ in terms of circulating progranulin protein (p = 0.686). A significant disease anticipation was observed in GRN+ subjects with the lowest progranulin levels. Conclusion: We propose a new plasma progranulin protein cutoff level useful for clinical practice.


Human Molecular Genetics | 2013

Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis

Katherine R. Smith; Hans Henrik M Dahl; Laura Canafoglia; Eva Andermann; John A. Damiano; Michela Morbin; A. Bruni; Giorgio Giaccone; Patrick Cossette; Paul Saftig; Joachim Grötzinger; Michael Schwake; Frederick Andermann; John F. Staropoli; Katherine B. Sims; Sara E. Mole; Silvana Franceschetti; Noreen A. Alexander; Jonathan D. Cooper; Harold A. Chapman; Stirling Carpenter; Samuel F. Berkovic; Melanie Bahlo

Kufs disease, an adult-onset neuronal ceroid lipofuscinosis, is challenging to diagnose and genetically heterogeneous. Mutations in CLN6 were recently identified in recessive Kufs disease presenting as progressive myoclonus epilepsy (Type A), whereas the molecular basis of cases presenting with dementia and motor features (Type B) is unknown. We performed genome-wide linkage mapping of two families with recessive Type B Kufs disease and identified a single region on chromosome 11 to which both families showed linkage. Exome sequencing of five samples from the two families identified homozygous and compound heterozygous missense mutations in CTSF within this linkage region. We subsequently sequenced CTSF in 22 unrelated individuals with suspected recessive Kufs disease, and identified an additional patient with compound heterozygous mutations. CTSF encodes cathepsin F, a lysosomal cysteine protease, dysfunction of which is a highly plausible candidate mechanism for a storage disorder like ceroid lipofuscinosis. In silico modeling suggested the missense mutations would alter protein structure and function. Moreover, re-examination of a previously published mouse knockout of Ctsf shows that it recapitulates the light and electron-microscopic pathological features of Kufs disease. Although CTSF mutations account for a minority of cases of type B Kufs, CTSF screening should be considered in cases with early-onset dementia and may avoid the need for invasive biopsies.

Collaboration


Dive into the Michela Morbin's collaboration.

Top Co-Authors

Avatar

Fabrizio Tagliavini

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Davide Pareyson

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Lauria

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Giorgio Giaccone

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Giulia Mazzoleni

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Mario Salmona

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Laura Colombo

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Franco Taroni

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Di Fede

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Claudia Ciano

Carlo Besta Neurological Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge