Michela Ottobre
Heriot-Watt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michela Ottobre.
Nonlinearity | 2011
Michela Ottobre; Grigorios A. Pavliotis
Various qualitative properties of solutions to the generalized Langevin equation (GLE) in a periodic or a confining potential are studied in this paper. We consider a class of quasi-Markovian GLEs, similar to the model that was introduced in Eckmann J-P et al 1999 Commun. Math. Phys. 201 657–97. Ergodicity, exponentially fast convergence to equilibrium, short time asymptotics, a homogenization theorem (invariance principle) and the white noise limit are studied. Our proofs are based on a careful analysis of a hypoelliptic operator which is the generator of an auxiliary Markov process. Systematic use of the recently developed theory of hypocoercivity (Villani C 2009 Mem. Am. Math. Soc. 202 iv, 141) is made.
Bernoulli | 2016
Michela Ottobre; Natesh S. Pillai; F. J. Pinski; Andrew M. Stuart
We describe a new MCMC method optimized for the sampling of probability measures on Hilbert space which have a density with respect to a Gaussian; such measures arise in the Bayesian approach to inverse problems, and in conditioned diffusions. Our algorithm is based on two key design principles: (i) algorithms which are well defined in infinite dimensions result in methods which do not suffer from the curse of dimensionality when they are applied to approximations of the infinite dimensional target measure on R^N; (ii) nonreversible algorithms can have better mixing properties compared to their reversible counterparts. The method we introduce is based on the hybrid Monte Carlo algorithm, tailored to incorporate these two design principles. The main result of this paper states that the new algorithm, appropriately rescaled, converges weakly to a second order Langevin diffusion on Hilbert space; as a consequence the algorithm explores the approximate target measures on R^N in a number of steps which is independent of N. We also present the underlying theory for the limiting nonreversible diffusion on Hilbert space, including characterization of the invariant measure, and we describe numerical simulations demonstrating that the proposed method has favourable mixing properties as an MCMC algorithm.
Reports on Mathematical Physics | 2016
Michela Ottobre
Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample from a given measure π by constructing a Markov chain that has π as invariant measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the detailed balance condition with respect to π; such chains are therefore reversible. On the other hand, recent work [ 18 , 21 , 28 , 29 ] has stressed several advantages of using irreversible processes for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in the study of nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in the analysis of nonreversible processes and we discuss some analytical methods to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible diffusions are available for continuous-time processes; however, for computational purposes one needs to discretize such dynamics. It is well known that the resulting discretized chain will not, in general, retain all the good properties of the process that it is obtained from. In particular, if we want to preserve the invariance of the target measure, the chain might no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [ 23 ], which results from a nonreversible discretization of a nonreversible dynamics.
arXiv: Analysis of PDEs | 2016
Dan Crisan; Michela Ottobre
In this paper, we consider diffusion semigroups generated by second-order differential operators of degenerate type. The operators that we consider do not, in general, satisfy the Hörmander condition and are not hypoelliptic. In particular, instead of working under the Hörmander paradigm, we consider the so-called UFG (uniformly finitely generated) condition, introduced by Kusuoka and Strook in the 1980s. The UFG condition is weaker than the uniform Hörmander condition, the smoothing effect taking place only in certain directions (rather than in every direction, as it is the case when the Hörmander condition is assumed). Under the UFG condition, Kusuoka and Strook deduced sharp small time asymptotic bounds for the derivatives of the semigroup in the directions where smoothing occurs. In this paper, we study the large time asymptotics for the gradients of the diffusion semigroup in the same set of directions and under the same UFG condition. In particular, we identify conditions under which the derivatives of the diffusion semigroup in the smoothing directions decay exponentially in time. This paper constitutes, therefore, a stepping stone in the analysis of the long-time behaviour of diffusions which do not satisfy the Hörmander condition.
SIAM Journal on Scientific Computing | 2016
Juan Kuntz; Michela Ottobre; Guy-Bart Stan; Mauricio Barahona
We introduce an algorithm based on semidefinite programming that yields increasing (resp. decreasing) sequences of lower (resp. upper) bounds on polynomial stationary averages of diffusions with polynomial drift vector and diffusion coefficients. The bounds are obtained by optimising an objective, determined by the stationary average of interest, over the set of real vectors defined by certain linear equalities and semidefinite inequalities which are satisfied by the moments of any stationary measure of the diffusion. We exemplify the use of the approach through several applications: a Bayesian inference problem; the computation of Lyapunov exponents of linear ordinary differential equations perturbed by multiplicative white noise; and a reliability problem from structural mechanics. Additionally, we prove that the bounds converge to the infimum and supremum of the set of stationary averages for certain SDEs associated with the computation of the Lyapunov exponents, and we provide numerical evidence of convergence in more general settings.
arXiv: Probability | 2018
Juan Kuntz; Michela Ottobre; Andrew M. Stuart
The Metropolis-Adjusted Langevin Algorithm (MALA) is a Markov Chain Monte Carlo method which creates a Markov chain reversible with respect to a given target distribution,
Infinite Dimensional Analysis, Quantum Probability and Related Topics | 2017
Vasilis Kontis; Michela Ottobre; Boguslaw Zegarlinski
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics | 2012
Michela Ottobre
\pi ^N
Journal of Functional Analysis | 2012
Michela Ottobre; Grigorios A. Pavliotis; Karel Pravda-Starov
Journal of Functional Analysis | 2016
Vasilis Kontis; Michela Ottobre; Boguslaw Zegarlinski
πN, with Lebesgue density on