Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michela Pollicita is active.

Publication


Featured researches published by Michela Pollicita.


Journal of Leukocyte Biology | 2006

Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: new therapeutic strategies

Stefano Aquaro; Valentina Svicher; Dominique Schols; Michela Pollicita; Andrea Antinori; Jan Balzarini; Carlo Federico Perno

Monocyte‐derived macrophages (M/M) are considered the second cellular target of HIV‐1 and a crucial virus reservoir. M/M are widely distributed in all tissues and organs, including the CNS, where they represent the most common HIV‐infected cells. Differently from activated CD4+ T lymphocytes, M/M are resistant to the cytopathic effect of HIV and survive HIV infection for a long time. Moreover, HIV‐1 replication in M/M is a key pathogenetic event during the course of HIV‐1 infection. Overall findings strongly support the clinical relevance of anti‐HIV drugs in M/M. Nucleoside RT inhibitors (NRTIs) are more active against HIV in M/M than in CD4+ T lymphocytes. Their activity is further boosted by the presence of an additional monophosphate group (i.e., a phosphonate group, as in the case of Tenofovir), thus overcoming the bottleneck of the low phosphorylation ability of M/M. In contrast, the antiviral activity of non‐NRTIs (not affecting the DNA chain elongation) in M/M is similar to that in CD4+ T lymphocytes. Protease inhibitors are the only clinically approved drugs acting at a late stage of the HIV lifecycle. They are able to interfere with HIV replication in HIV‐1 chronically infected M/M, even if at concentrations greater than those observed in HIV‐1 chronically infected CD4+ T lymphocytes. Finally, several new drugs have been shown to interfere efficiently with HIV replication in M/M, including entry inhibitors. A better understanding of the activity of the anti‐HIV drugs in M/M may represent a key element for the design of effective anti‐HIV chemotherapy.


Hepatology | 2015

Hepatitis B surface antigen genetic elements critical for immune escape correlate with hepatitis B virus reactivation upon immunosuppression

R. Salpini; L. Colagrossi; Maria Concetta Bellocchi; Matteo Surdo; Christina Becker; Claudia Alteri; M. Aragri; A. Ricciardi; Daniele Armenia; Michela Pollicita; Fabiola Di Santo; L. Carioti; Yoram Louzoun; Claudio M. Mastroianni; Miriam Lichtner; M. Paoloni; Mariarosaria Esposito; Chiara D'Amore; Aldo Marrone; Massimo Marignani; C. Sarrecchia; Loredana Sarmati; Massimo Andreoni; Mario Angelico; Jens Verheyen; Carlo Federico Perno; Valentina Svicher

Hepatitis B virus (HBV) reactivation during immunosuppression can lead to severe acute hepatitis, fulminant liver failure, and death. Here, we investigated hepatitis B surface antigen (HBsAg) genetic features underlying this phenomenon by analyzing 93 patients: 29 developing HBV reactivation and 64 consecutive patients with chronic HBV infection (as control). HBsAg genetic diversity was analyzed by population‐based and ultradeep sequencing (UDS). Before HBV reactivation, 51.7% of patients were isolated hepatitis B core antibody (anti‐HBc) positive, 31.0% inactive carriers, 6.9% anti‐HBc/anti‐HBs (hepatitis B surface antibody) positive, 6.9% isolated anti‐HBs positive, and 3.4% had an overt HBV infection. Of HBV‐reactivated patients, 51.7% were treated with rituximab, 34.5% with different chemotherapeutics, and 13.8% with corticosteroids only for inflammatory diseases. In total, 75.9% of HBV‐reactivated patients (vs. 3.1% of control patients; P < 0.001) carried HBsAg mutations localized in immune‐active HBsAg regions. Of the 13 HBsAg mutations found in these patients, 8 of 13 (M103I‐L109I‐T118K‐P120A‐Y134H‐S143L‐D144E‐S171F) reside in a major hydrophilic loop (target of neutralizing antibodies [Abs]); some of them are already known to hamper HBsAg recognition by humoral response. The remaining five (C48G‐V96A‐L175S‐G185E‐V190A) are localized in class I/II–restricted T‐cell epitopes, suggesting a role in HBV escape from T‐cell‐mediated responses. By UDS, these mutations occurred in HBV‐reactivated patients with a median intrapatient prevalence of 73.3% (range, 27.6%‐100%) supporting their fixation in the viral population as a predominant species. In control patients carrying such mutations, their median intrapatient prevalence was 4.6% (range, 2.5%‐11.3%; P < 0.001). Finally, additional N‐linked glycosylation (NLG) sites within the major hydrophilic loop were found in 24.1% of HBV‐reactivated patients (vs. 0% of chronic patients; P < 0.001); 5 of 7 patients carrying these sites remained HBsAg negative despite HBV reactivation. NLG can mask immunogenic epitopes, abrogating HBsAg recognition by Abs. Conclusion: HBV reactivation occurs in a wide variety of clinical settings requiring immune‐suppressive therapy, and correlates with HBsAg mutations endowed with enhanced capability to evade immune response. This highlights the need for careful patient monitoring in all immunosuppressive settings at reactivation risk and of establishing a prompt therapy to prevent HBV‐related clinical complications. (Hepatology 2015;61:823–833)


Antimicrobial Agents and Chemotherapy | 2010

Secondary Integrase Resistance Mutations Found in HIV-1 Minority Quasispecies in Integrase Therapy-Naive Patients Have Little or No Effect on Susceptibility to Integrase Inhibitors

Francesca Ceccherini-Silberstein; Kurt Van Baelen; Daniele Armenia; Maria Trignetti; Evelien Rondelez; Lavinia Fabeni; Fernanda Scopelliti; Michela Pollicita; Liesbeth Van Wesenbeeck; Veerle Van Eygen; Luca Dori; Loredana Sarmati; Stefano Aquaro; Guido Palamara; Massimo Andreoni; Lieven Stuyver; Carlo Federico Perno

ABSTRACT The goal of this study was to explore the presence of integrase strand transfer inhibitor (InSTI) resistance mutations in HIV-1 quasispecies present in InSTI-naïve patients and to evaluate their in vitro effects on phenotypic susceptibility to InSTIs and their replication capacities. The RT-RNase H-IN region was PCR amplified from plasma viral RNA obtained from 49 HIV-1 subtype B-infected patients (21 drug naïve and 28 failing highly active antiretroviral therapy [HAART] not containing InSTIs) and recombined with an HXB2-based backbone with RT and IN deleted. Recombinant viruses were tested against raltegravir and elvitegravir and for replication capacity. Three-hundred forty-four recombinant viruses from 49 patients were successfully analyzed both phenotypically and genotypically. The majority of clones were not phenotypically resistant to InSTIs: 0/344 clones showed raltegravir resistance, and only 3 (0.87%) showed low-level elvitegravir resistance. No primary resistance mutations for raltegravir and elvitegravir were found as major or minor species. The majority of secondary mutations were also absent or rarely present. Secondary mutations, such as T97A and G140S, found rarely and only as minority quasispecies, were present in the elvitegravir-resistant clones. A novel mutation, E92G, although rarely found in minority quasispecies, showed elvitegravir resistance. Preexisting genotypic and phenotypic raltegravir resistance was extremely rare in InSTI-naïve patients and confined to only a restricted minority of secondary variants. Overall, these results, together with others based on population and ultradeep sequencing, suggest that at this point IN genotyping in all patients before raltegravir treatment may not be cost-effective and should not be recommended until evidence of transmitted drug resistance to InSTIs or the clinical relevance of IN minor variants/polymorphisms is determined.


Retrovirology | 2007

The contribution of peroxynitrite generation in HIV replication in human primary macrophages.

Stefano Aquaro; Carolina Muscoli; Alessandro Ranazzi; Michela Pollicita; Teresa Granato; Laura Masuelli; Andrea Modesti; Carlo Federico Perno; Vincenzo Mollace

BackgroundMonocytes/Macrophages (M/M) play a pivotal role as a source of virus during the whole course of HIV-1 infection. Enhanced oxidative stress is involved in the pathogenesis of HIV-1 infection. HIV-1 regulatory proteins induce a reduction of the expression and the activity of MnSOD, the mitochondrial isoform leading to a sustained generation of superoxide anions and peroxynitrite that represent important mediators of HIV-1 replication in M/M. MnTBAP (Mn(III)tetrakis(4-benzoic acid)porphrin chloride), a synthetic peroxynitrite decomposition catalyst, reduced oxidative stress subsequent to peroxynitrite generation.ResultsVirus production was assessed by p24 ELISA, western blot, and electron microscopy during treatment with MnTBAP. MnTBAP treatment showed a reduction of HIV-1 replication in both acutely and chronically infected M/M: 99% and 90% inhibition of p24 released in supernatants compared to controls, respectively. Maturation of p55 and p24 was strongly inhibited by MnTBAP in both acutely and chronically infected M/M. EC50 and EC90 are 3.7 (± 0.05) μM and 19.5 (± 0.5) μM, in acutely infected M/M; 6.3 (± 0.003) μM and 30 (± 0.6) μM, in chronically infected M/M. In acutely infected peripheral blood limphocytes (PBL), EC50 and EC90 are 7.4 (± 0.06) μM and of 21.3 (± 0.6) μM, respectively. Treatment of acutely-infected M/M with MnTBAP inhibited the elevated levels of malonildialdehyde (MDA) together with the nitrotyrosine staining observed during HIV-1 replication. MnTBAP strongly reduced HIV-1 particles in infected M/M, as shown by electron microscopy. Moreover, in presence of MnTBAP, HIV-1 infectivity was reduced of about 1 log compared to control.ConclusionResults support the role of superoxide anions in HIV-1 replication in M/M and suggest that MnTBAP may counteract HIV-1 replication in combination with other antiretroviral treatments.


Antiviral Research | 2011

Comparative antiviral activity of integrase inhibitors in human monocyte-derived macrophages and lymphocytes

Fernanda Scopelliti; Michela Pollicita; Francesca Ceccherini-Silberstein; Fabiola Di Santo; Matteo Surdo; Stefano Aquaro; Carlo Federico Perno

The activity of raltegravir and 4 other integrase inhibitors (MK-2048, L870,810, IN2, and IN5) was investigated in primary human macrophages, PBMC and C8166-lymphocytic T cells, in order to determine their relative potency and efficacy in different cellular systems of HIV infection. Raltegravir showed better protective efficacy in all cell types; MK-2048, L870,810 and IN5 showed a potent anti-HIV-1 activity in macrophages, while in lymphocytes only MK-2048 and L870,810 showed an inhibitory effect comparable to raltegravir. IN2 was a poorly effective anti-HIV-1 compound in all cellular systems. All effective integrase inhibitors exhibited a potent antiviral activity against both X4 and R5 HIV-1 strains. In general, raltegravir, MK-2048, L870,810 and IN5 showed anti HIV activity similar or slightly higher in macrophages compared to PBMC and C8166 T cells: for MK-2048, the EC(50) was 0.4, 0.9, 11.5 nM in macrophages, in PBMCs and T cells, respectively; for L870,810, the EC(50) was 1.5, 14.3, and 10.6 nM, respectively; for IN5 the EC(50) was 0.5, 13.7, and 5.7 nM, respectively.


BMC Neuroscience | 2009

Apoptosis and telomeres shortening related to HIV-1 induced oxidative stress in an astrocytoma cell line

Michela Pollicita; Carolina Muscoli; Antonella Sgura; Alberto Biasin; Teresa Granato; Laura Masuelli; Vincenzo Mollace; Caterina Tanzarella; Claudio Del Duca; Paola Rodinò; Carlo Federico Perno; Stefano Aquaro

BackgroundOxidative stress plays a key role in the neuropathogenesis of Human Immunodeficiency Virus-1 (HIV-1) infection causing apoptosis of astroglia cells and neurons. Recent data have shown that oxidative stress is also responsible for the acceleration of human fibroblast telomere shortening in vitro. In the present study we analyzed the potential relations occurring between free radicals formation and telomere length during HIV-1 mediated astroglial death.ResultsTo this end, U373 human astrocytoma cells have been directly exposed to X4-using HIV-1IIIB strain, for 1, 3 or 5 days and treated (where requested) with N-acetylcysteine (NAC), a cysteine donor involved in the synthesis of glutathione (GSH, a cellular antioxidant) and apoptosis has been evaluated by FACS analysis. Quantitative-FISH (Q-FISH) has been employed for studying the telomere length while intracellular reduced/oxidized glutathione (GSH/GSSG) ratio has been determined by High-Performance Liquid Chromatography (HPLC). Incubation of U373 with HIV-1IIIB led to significant induction of cellular apoptosis that was reduced in the presence of 1 mM NAC. Moreover, NAC improved the GSH/GSSG, a sensitive indicator of oxidative stress, that significantly decreased after HIV-1IIIB exposure in U373. Analysis of telomere length in HIV-1 exposed U373 showed a statistically significant telomere shortening, that was completely reverted in NAC-treated U373.ConclusionOur results support the role of HIV-1-mediated oxidative stress in astrocytic death and the importance of antioxidant compounds in preventing these cellular damages. Moreover, these data indicate that the telomere structure, target for oxidative damage, could be the key sensor of cell apoptosis induced by oxidative stress after HIV infection.


Future Hiv Therapy | 2008

Oxidative stress and HIV infection: target pathways for novel therapies?

Stefano Aquaro; Fernanda Scopelliti; Michela Pollicita; Carlo Federico Perno

Oxidative stress is thought to play an important role in the progression of HIV infection. fact, it has been observed that perturbations in antioxidant defense systems, and consequently redox imbalance, are present in many tissues of HIV-infected patients. Moreover, there is clear evidence that oxidative stress may contribute to several aspects of HIV disease, including viral replication, inflammatory response and decreased immune cell proliferation. For this reason, the exogenous supply of antioxidants, as natural compounds and new-generation antioxidants that scavenge free radicals, might represent an important additional strategy for the treatment of HIV infection in the era after HAART therapy has been applied.


Recent Patents on Cns Drug Discovery | 2008

HIV-1-associated dementia during HAART therapy.

Michela Pollicita; Stefano Aquaro; Valentina Svicher; Luigi Ronga; Carlo Federico Perno

Human immunodeficiency virus (HIV-1) is the responsible agent of acquired immunodeficiency syndrome (AIDS), a multi system disorder including the central nervous system (CNS). The CNS is an immunological privileged site providing a sanctuary and reservoir for HIV-1. Monocytes derived macrophages (MDM) and microglia play a critical role in the development of HIV-associated dementia (HAD). Although the use of highly active antiretroviral therapy (HAART) has led to a strong reduction of HAD incidence, the prevalence of minor HIV-1 associated cognitive impairment appears rising among AIDS patients. Various factors including toxicity, insurgence of drug resistance and sometimes limited access to HAART, contribute to this phenomenon. Independent evolution of drug resistance mutations in several areas of the CNS may emerge as consequence of incomplete suppression of HIV-1, probably related to poor penetration of antiretroviral drugs into CNS. The emergence of resistant virus in the CNS may considerable influence the outcome of neurological disease and also the reseeding of HIV-1 in the systemic circulation upon failure of therapy. In this review, we outline the current state of knowledge regarding the pathophysiology of CNS injury in HIV-1 infection and will focus on the effects of HAART on CNS.


Journal of NeuroVirology | 2005

Human immunodeficiency virus infection and acquired immunodeficiency syndrome dementia complex : Role of cells of monocyte-macrophage lineage

Stefano Aquaro; Luigi Ronga; Michela Pollicita; Andrea Antinori; Alessandro Ranazzi; Carlo Federico Perno

The entry of human immunodeficiency virus (HIV) into the central nervous system (CNS) causes both the establishment of a lifelong viral reservoir in the brain and symptoms of neurological dysfunction that have an AIDS dementia complex (ADC) clinical appearance. Neurological dysfunction in ADC patients still remains an unresolved problem. However, ADC pathogenesis may be a multistep process that starts with HIV invasion of CNS by crossing the blood-brain barrier (BBB). It progresses by developing a chronic inflammatory status that can cause dysfunction in neurons and astrocytes that result in apoptotic death. Monocytes-macrophages (M/M) may play an important role by concealing the HIV transfer across the BBB. Furthermore, HIV-infected M/M could produce and release neurotoxic factors. In this review the main mediators and cells involved in pathogenesis and development of ADC are highlighted. A better understanding of the mechanisms involved in this process may help in a successful therapeutic approach to the neuropathogenesis of HIV infection.


Antimicrobial Agents and Chemotherapy | 2007

Novel In Vivo Model for the Study of Human Immunodeficiency Virus Type 1 Transcription Inhibitors: Evaluation of New 6-Desfluoroquinolone Derivatives

Miguel Stevens; Michela Pollicita; Christophe Pannecouque; Erik Verbeken; Oriana Tabarrini; Violetta Cecchetti; Stefano Aquaro; Carlo Federico Perno; Arnaldo Fravolini; Erik De Clercq; Dominique Schols; Jan Balzarini

ABSTRACT Two novel 6-desfluoroquinolone derivatives, HM-12 and HM-13, were evaluated for anti-human immunodeficiency virus (anti-HIV) activity in acutely, chronically, and latently HIV type 1 (HIV-1)-infected cell cultures and were found to behave as potent HIV-1 transcription inhibitors. In order to extend this result in vivo, we developed an artificial hu-SCID mouse model for HIV-1 latency based on SCID mice engrafted with latently HIV-1-infected promyelocytic OM-10.1 cells in which HIV-1 can be reactivated in vivo by the administration of human tumor necrosis factor alpha (hTNF-α). Treating these SCID mice with HM-12 or HM-13 prior to hTNF-α stimulation resulted in a pronounced suppressive effect on viral reactivation. Since both quinolone derivatives were able to inhibit the reactivation of HIV-1 from this artificial viral reservoir in vivo, we provide encouraging evidence for the use of quinolones in the control of HIV-1 infections.

Collaboration


Dive into the Michela Pollicita's collaboration.

Top Co-Authors

Avatar

R. Salpini

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Valentina Svicher

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Alteri

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Massimo Andreoni

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

C.F. Perno

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

C. Sarrecchia

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

L. Colagrossi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

A. Bertoli

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge