Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michela Ranieri is active.

Publication


Featured researches published by Michela Ranieri.


European Journal of Neurology | 2009

TARDBP (TDP-43) sequence analysis in patients with familial and sporadic ALS : identification of two novel mutations

R. Del Bo; Serena Ghezzi; Stefania Corti; Massimo Pandolfo; Michela Ranieri; Domenico Santoro; Isabella Ghione; Alessandro Prelle; V. Orsetti; Michelangelo Mancuso; Gianni Sorarù; Chiara Briani; Corrado Angelini; Gabriele Siciliano; Nereo Bresolin; Giacomo P. Comi

Background and purpose:  Increasing evidence suggests a direct role of the TAR DNA‐binding protein 43 (TDP‐43) in neurodegeneration. Mutations in the TARDBP gene, which codes for TDP‐43, have been recently reported in familial and sporadic amyotrophic lateral sclerosis (ALS) cases.


Neurobiology of Aging | 2012

C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect

Antonia Ratti; Lucia Corrado; Barbara Castellotti; Roberto Del Bo; Isabella Fogh; Cristina Cereda; Cinzia Tiloca; Alessandra Bagarotti; Viviana Pensato; Michela Ranieri; Stella Gagliardi; Daniela Calini; Letizia Mazzini; Franco Taroni; Stefania Corti; Mauro Ceroni; Gaia Donata Oggioni; Kuang Lin; John Powell; Gianni Sorarù; Nicola Ticozzi; Giacomo P. Comi; Sandra D'Alfonso; Cinzia Gellera; Vincenzo Silani

A hexanucleotide repeat expansion (RE) in C9ORF72 gene was recently reported as the main cause of amyotrophic lateral sclerosis (ALS) and cases with frontotemporal dementia. We screened C9ORF72 in a large cohort of 259 familial ALS, 1275 sporadic ALS, and 862 control individuals of Italian descent. We found RE in 23.9% familial ALS, 5.1% sporadic ALS, and 0.2% controls. Two cases carried the RE together with mutations in other ALS-associated genes. The phenotype of RE carriers was characterized by bulbar-onset, shorter survival, and association with cognitive and behavioral impairment. Extrapyramidal and cerebellar signs were also observed in few patients. Genotype data revealed that 95% of RE carriers shared a restricted 10-single nucleotide polymorphism haplotype within the previously reported 20-single nucleotide polymorphism risk haplotype, detectable in only 27% of nonexpanded ALS cases and in 28% of controls, suggesting a common founder with cohorts of North European ancestry. Although C9ORF72 RE segregates with disease, the identification of RE both in controls and in patients carrying additional pathogenic mutations suggests that penetrance and phenotypic expression of C9ORF72 RE may depend on additional genetic risk factors.


Brain | 2012

Next-generation sequencing reveals DGUOK mutations in adult patients with mitochondrial DNA multiple deletions

Dario Ronchi; Caterina Garone; Andreina Bordoni; Purificacion Gutierrez Rios; Sarah E. Calvo; Michela Ripolone; Michela Ranieri; Mafalda Rizzuti; Luisa Villa; Francesca Magri; Stefania Corti; Nereo Bresolin; Vamsi K. Mootha; Maurizio Moggio; Salvatore DiMauro; Giacomo P. Comi; Monica Sciacco

The molecular diagnosis of mitochondrial disorders still remains elusive in a large proportion of patients, but advances in next generation sequencing are significantly improving our chances to detect mutations even in sporadic patients. Syndromes associated with mitochondrial DNA multiple deletions are caused by different molecular defects resulting in a wide spectrum of predominantly adult-onset clinical presentations, ranging from progressive external ophthalmoplegia to multi-systemic disorders of variable severity. The mutations underlying these conditions remain undisclosed in half of the affected subjects. We applied next-generation sequencing of known mitochondrial targets (MitoExome) to probands presenting with adult-onset mitochondrial myopathy and harbouring mitochondrial DNA multiple deletions in skeletal muscle. We identified autosomal recessive mutations in the DGUOK gene (encoding mitochondrial deoxyguanosine kinase), which has previously been associated with an infantile hepatocerebral form of mitochondrial DNA depletion. Mutations in DGUOK occurred in five independent subjects, representing 5.6% of our cohort of patients with mitochondrial DNA multiple deletions, and impaired both muscle DGUOK activity and protein stability. Clinical presentations were variable, including mitochondrial myopathy with or without progressive external ophthalmoplegia, recurrent rhabdomyolysis in a young female who had received a liver transplant at 9 months of age and adult-onset lower motor neuron syndrome with mild cognitive impairment. These findings reinforce the concept that mutations in genes involved in deoxyribonucleotide metabolism can cause diverse clinical phenotypes and suggest that DGUOK should be screened in patients harbouring mitochondrial DNA deletions in skeletal muscle.


Neurology Research International | 2013

Mitochondrial Fusion Proteins and Human Diseases

Michela Ranieri; Simona Brajkovic; Giulietta Riboldi; Dario Ronchi; Federica Rizzo; Nereo Bresolin; Stefania Corti; Giacomo P. Comi

Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1) and 2 (MFN2), located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1), in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimers and Parkinsons diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.


Molecular Neurobiology | 2014

Antisense Oligonucleotide Therapy for the Treatment of C9ORF72 ALS/FTD Diseases

Giulietta Riboldi; Chiara Zanetta; Michela Ranieri; Monica Nizzardo; Chiara Simone; Francesca Magri; Nereo Bresolin; Giacomo P. Comi; Stefania Corti

Motor neuron disorders, and particularly amyotrophic lateral sclerosis (ALS), are fatal diseases that are due to the loss of motor neurons in the brain and spinal cord, with progressive paralysis and premature death. It has been recently shown that the most frequent genetic cause of ALS, frontotemporal dementia (FTD), and other neurological diseases is the expansion of a hexanucleotide repeat (GGGGCC) in the non-coding region of the C9ORF72 gene. The pathogenic mechanisms that produce cell death in the presence of this expansion are still unclear. One of the most likely hypotheses seems to be the gain-of-function that is achieved through the production of toxic RNA (able to sequester RNA-binding protein) and/or toxic proteins. In recent works, different authors have reported that antisense oligonucleotides complementary to the C9ORF72 RNA transcript sequence were able to significantly reduce RNA foci generated by the expanded RNA, in affected cells. Here, we summarize the recent findings that support the idea that the buildup of “toxic” RNA containing the GGGGCC repeat contributes to the death of motor neurons in ALS and also suggest that the use of antisense oligonucleotides targeting this transcript is a promising strategy for treating ALS/frontotemporal lobe dementia (FTLD) patients with the C9ORF72 repeat expansion. These data are particularly important, given the state of the art antisense technology, and they allow researchers to believe that a clinical application of these discoveries will be possible soon.


Neurobiology of Aging | 2013

Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia

Cinzia Tiloca; Nicola Ticozzi; Viviana Pensato; Lucia Corrado; Roberto Del Bo; Cinzia Bertolin; Chiara Fenoglio; Stella Gagliardi; Daniela Calini; Giuseppe Lauria; Barbara Castellotti; Alessandra Bagarotti; Stefania Corti; Daniela Galimberti; Annachiara Cagnin; Carlo Gabelli; Michela Ranieri; Mauro Ceroni; Gabriele Siciliano; Letizia Mazzini; Cristina Cereda; Elio Scarpini; Gianni Sorarù; Giacomo P. Comi; Sandra D'Alfonso; Cinzia Gellera; Antonia Ratti; John Landers; Vincenzo Silani

Mutations in the profilin 1 (PFN1) gene, encoding a protein regulating filamentous actin growth through its binding to monomeric G-actin, have been recently identified in familial amyotrophic lateral sclerosis (ALS). Functional studies performed on ALS-associated PFN1 mutants demonstrated aggregation propensity, alterations in growth cone, and cytoskeletal dynamics. Previous screening of PFN1 gene in sporadic ALS (SALS) cases led to the identification of the p.E117G mutation, which is likely to represent a less pathogenic variant according to both frequency data in control subjects and cases, and functional experiments. To determine the effective contribution of PFN1 mutations in SALS, we analyzed a large cohort of 1168 Italian SALS patients and also included 203 frontotemporal dementia (FTD) cases because of the great overlap between these 2 neurodegenerative diseases. We detected the p.E117G variant in 1 SALS patient and the novel synonymous change p.G15G in another patient, but none in a panel of 1512 control subjects. Our results suggest that PFN1 mutations in sporadic ALS and in FTD are rare, at least in the Italian population.


Journal of the Neurological Sciences | 2012

Optic atrophy plus phenotype due to mutations in the OPA1 gene: two more Italian families.

Michela Ranieri; Roberto Del Bo; Andreina Bordoni; Dario Ronchi; Irene Colombo; Giulietta Riboldi; Alessandra Cosi; Maura Servida; Francesca Magri; Maurizio Moggio; Nereo Bresolin; Giacomo P. Comi; Stefania Corti

Autosomal Dominant Optic Atrophy (ADOA) is characterized by the selective degeneration of retinal ganglion cells. The occurrence of mutations in the gene encoding the dynamin-like GTPase protein Optic Atrophy 1 (OPA1) has been observed in about 60–70% of ADOA cases. A subset of missense mutations, mostly within the GTPase domain, has recently been associated with a syndromic ADOA form called “OPA1 plus” phenotype presenting, at muscle level, mitochondrial DNA (mtDNA) instability. In this study we disclosed two OPA1 gene mutations in independent probands from two families affected by OPA1 plus phenotype: the previously reported c.985-2A > G substitution and a novel microdeletion (c.2819-1_2821del). The correlation between genotype and phenotype and the effects of these variants at the transcript level and in the muscle tissue were investigated, confirming the broad complexity in the phenotypic spectrum associated with these OPA1 mutations.


Neurobiology of Aging | 2011

No major progranulin genetic variability contribution to disease etiopathogenesis in an ALS Italian cohort

Roberto Del Bo; Stefania Corti; Domenico Santoro; Isabella Ghione; Chiara Fenoglio; Serena Ghezzi; Michela Ranieri; Daniela Galimberti; Michelangelo Mancuso; Gabriele Siciliano; Chiara Briani; Luigi Murri; Elio Scarpini; Jennifer C. Schymick; Bryan J. Traynor; Nereo Bresolin; Giacomo P. Comi

To analyze the contribution of progranulin (PGRN) to the etiopathogenesis of amyotrophic lateral sclerosis (ALS), we performed a PGRN gene screening in 146 Italian patients (12 familial cases) and evaluated the association of two common variants with risk of developing ALS in 239 sporadic cases (SALS). Progranulin mRNA and protein levels were measured in peripheral blood mononuclear cells and serum of a subset of these patients and controls. PGRN sequence analysis revealed a heterozygous change (p.S120Y), previously observed in an independent sporadic ALS-FTD patient. Haplotype analysis showed a conserved PGRN region among these two subjects consistent with possible common ancestor allele. Two non-coding polymorphisms were not associated to increased risk to develop ALS; mRNA and serum levels were not significantly different between cases and controls. Overall, our data argue against the hypothesis of progranulin as a major risk factor for motor neuron dysfunction, at least in Italian population. The p.S120Y variant may characterize rare patients with SALS, although its pathogenetic mechanism remains to be elucidated.


Case Reports in Neurology | 2011

Tyr78Phe Transthyretin Mutation with Predominant Motor Neuropathy as the Initial Presentation

Giulietta Riboldi; Roberto Del Bo; Michela Ranieri; Francesca Magri; Monica Sciacco; Maurizio Moggio; Nereo Bresolin; Stefania Corti; Giacomo P. Comi

Transthyretin (TTR) amyloidosis, the most frequent form of hereditary amyloidosis, is caused by dominant mutations in the TTR gene. More than 100 mutations have been identified. Clinical manifestations of TTR amyloidosis are usually induced by extracellular amyloid deposition in several organs. The major neurological manifestation is motor-sensory neuropathy associated with dysautonomic impairment. Here, we describe a63-year-old man who came to our institution due to a suspected motor neuron disease. During a 4-year follow-up period, he underwent extensive clinical examination, electromyographic studies, sural nerve biopsy and TTR gene analysis by direct sequencing. Despite the predominant motor involvement, the detailed clinical examination also showed some mild sensory and dysautonomic signs. In addition, his clinical and family history included multiorgan disorders, such as carpal tunnel syndrome, as well as conditions with cardiac, renal, eye, and hepatic involvement. The sural nerve biopsy disclosed amyloid deposition, and the sequence analysis of the TTR gene detected a heterozygous Tyr78Phe substitution. The TTR gene variant found in our patient had only been described once so far, in a French man of Italian origin presenting with late-onset peripheral neuropathy and bilateral carpal tunnel syndrome. The predominant motor involvement presented by our patient is an uncommon occurrence and demonstrates the clinical heterogeneity of TTR amyloidosis.


Current Treatment Options in Neurology | 2016

Fabry Disease: Recognition, Diagnosis, and Treatment of Neurological Features

Michela Ranieri; Gloria Bedini; Eugenio Parati; Anna Bersano

Opinion statementFabry disease is an X-linked, lysosomal storage disorder caused by a mutation in the GLA gene leading to a deficiency in alpha-galactosidase A enzyme (α-Gal A) activity, which in turn results in accumulation of globotriaosylceramide in the vascular endothelium and smooth muscle cells of different organs, including kidney and heart, finally leading to impairment or failure of organ function. The central and peripheral nervous systems are also affected leading to neurological manifestations such as cerebrovascular diseases, small fiber neuropathy (SFN), and dysautonomic disorders that may be the presenting clinical features in a proportion of patients. This review offers a complete update of all neurological aspects of Fabry disease and therapeutic options. The rarity of disease, as well as the incomplete knowledge regarding natural history, pathogenic mechanisms, and the uncertain efficacy of available therapies, make imperative the acquisition of standardized data on natural disease course. These data are fundamental for the development of new treatments better able to access the central nervous system, to bypass the neutralizing antibodies and to improve the heart and kidney function.

Collaboration


Dive into the Michela Ranieri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Moggio

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge