Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelangelo Campanella is active.

Publication


Featured researches published by Michelangelo Campanella.


Cell Metabolism | 2008

Regulation of Mitochondrial Structure and Function by the F1Fo-ATPase Inhibitor Protein, IF1

Michelangelo Campanella; Edward Casswell; Stephanie Chong; Ziad Farah; Mariusz R. Wieckowski; Andrey Y. Abramov; Andrew Tinker; Michael R. Duchen

When mitochondrial respiration is compromised, the F(1)F(o)-ATP synthase reverses and consumes ATP, serving to maintain the mitochondrial membrane potential (Delta psi(m)). This process is mitigated by IF(1). As little is known of the cell biology of IF(1), we have investigated the functional consequences of varying IF(1) expression. We report that, (1) during inhibition of respiration, IF(1) conserves ATP at the expense of Delta psi(m); (2) overexpression of IF(1) is protective against ischemic injury; (3) relative IF(1) expression level varies between tissues and cell types and dictates the response to inhibition of mitochondrial respiration; (4) the density of mitochondrial cristae is increased by IF(1) overexpression and decreased by IF(1) suppression; and (5) IF(1) overexpression increases the formation of dimeric ATP synthase complexes and increases F(1)F(o)-ATP synthase activity. Thus, IF(1) regulates mitochondrial function and structure under both physiological and pathological conditions.


Oncogene | 2013

The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells

Sara Galavotti; Stefano Bartesaghi; Danilo Faccenda; M Shaked-Rabi; S Sanzone; A McEvoy; David Dinsdale; Fabrizio Condorelli; Sebastian Brandner; Michelangelo Campanella; Richard Grose; Chris Jones; Paolo Salomoni

The aggressiveness of glioblastoma multiforme (GBM) is defined by local invasion and resistance to therapy. Within established GBM, a subpopulation of tumor-initiating cells with stem-like properties (GBM stem cells, GSCs) is believed to underlie resistance to therapy. The metabolic pathway autophagy has been implicated in the regulation of survival in GBM. However, the status of autophagy in GBM and its role in the cancer stem cell fraction is currently unclear. We found that a number of autophagy regulators are highly expressed in GBM tumors carrying a mesenchymal signature, which defines aggressiveness and invasion, and are associated with components of the MAPK pathway. This autophagy signature included the autophagy-associated genes DRAM1 and SQSTM1, which encode a key regulator of selective autophagy, p62. High levels of DRAM1 were associated with shorter overall survival in GBM patients. In GSCs, DRAM1 and SQSTM1 expression correlated with activation of MAPK and expression of the mesenchymal marker c-MET. DRAM1 knockdown decreased p62 localization to autophagosomes and its autophagy-mediated degradation, thus suggesting a role for DRAM1 in p62-mediated autophagy. In contrast, autophagy induced by starvation or inhibition of mTOR/PI-3K was not affected by either DRAM1 or p62 downregulation. Functionally, DRAM1 and p62 regulate cell motility and invasion in GSCs. This was associated with alterations of energy metabolism, in particular reduced ATP and lactate levels. Taken together, these findings shed new light on the role of autophagy in GBM and reveal a novel function of the autophagy regulators DRAM1 and p62 in control of migration/invasion in cancer stem cells.


Journal of Biological Chemistry | 2010

Inorganic polyphosphate and energy metabolism in mammalian cells.

Evgeny Pavlov; Roozbeh Aschar-Sobbi; Michelangelo Campanella; Raymond J. Turner; María R. Gómez-García; Andrey Y. Abramov

Inorganic polyphosphate (poly P) is a polymer made from as few as 10 to several hundred phosphate molecules linked by phosphoanhydride bonds similar to ATP. Poly P is ubiquitous in all mammalian organisms, where it plays multiple physiological roles. The metabolism of poly P in mammalian organisms is not well understood. We have examined the mechanism of poly P production and the role of this polymer in cell energy metabolism. Poly P levels in mitochondria and intact cells were estimated using a fluorescent molecular probe, 4′,6-diamidino-2-phenylindole. Poly P levels were dependent on the metabolic state of the mitochondria. Poly P levels were increased by substrates of respiration and in turn reduced by mitochondrial inhibitor (rotenone) or an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone). Oligomycin, an inhibitor of mitochondrial ATP-synthase, blocked the production of poly P. Enzymatic depletion of poly P from cells significantly altered the rate of ATP metabolism. We propose the existence of a feedback mechanism where poly P production and cell energy metabolism regulate each other.


Cell Calcium | 2002

Endoplasmic reticulum, Bcl-2 and Ca2+ handling in apoptosis.

Davide Ferrari; Paolo Pinton; György Szabadkai; M Chami; Michelangelo Campanella; Tullio Pozzan; Rosario Rizzuto

In the complex signalling interplay that allows extracellular signals to be decoded into activation of apoptotic cell death, Ca(2+) plays a significant role. This is supported not only by evidence linking alterations in Ca(2+) homeostasis to the triggering of apoptotic (and in some cases necrotic) cell death, but also by recent data indicating that a key anti-apoptotic protein, Bcl-2, has a direct effect on ER Ca(2+) handling. We will briefly summarise the first aspect, and describe in more detail these new data, demonstrating that (i) Bcl-2 reduces the state of filling of the ER Ca(2+) store and (ii) this Ca(2+) signalling alteration renders the cells less sensitive to apoptotic stimuli. Overall, these results suggest that calcium homeostasis may represent a pharmacological target in the fundamental pathological process of apoptosis.


Cell Death & Differentiation | 2015

AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1

Flavie Strappazzon; Francesca Nazio; Mauro Corrado; Valentina Cianfanelli; Alessandra Romagnoli; Gian Maria Fimia; Silvia Campello; Roberta Nardacci; Mauro Piacentini; Michelangelo Campanella; Francesco Cecconi

Damaged mitochondria are eliminated by mitophagy, a selective form of autophagy whose dysfunction associates with neurodegenerative diseases. PINK1, PARKIN and p62/SQTMS1 have been shown to regulate mitophagy, leaving hitherto ill-defined the contribution by key players in ‘general’ autophagy. In basal conditions, a pool of AMBRA1 – an upstream autophagy regulator and a PARKIN interactor – is present at the mitochondria, where its pro-autophagic activity is inhibited by Bcl-2. Here we show that, upon mitophagy induction, AMBRA1 binds the autophagosome adapter LC3 through a LIR (LC3 interacting region) motif, this interaction being crucial for regulating both canonical PARKIN-dependent and -independent mitochondrial clearance. Moreover, forcing AMBRA1 localization to the outer mitochondrial membrane unleashes a massive PARKIN- and p62-independent but LC3-dependent mitophagy. These results highlight a novel role for AMBRA1 as a powerful mitophagy regulator, through both canonical or noncanonical pathways.


Trends in Biochemical Sciences | 2009

IF1: setting the pace of the F1Fo-ATP synthase

Michelangelo Campanella; Nadeene Parker; Choon Tan; Andrew M. Hall; Michael R. Duchen

When mitochondrial function is compromised and the mitochondrial membrane potential (Deltapsi(m)) falls below a threshold, the F(1)F(o)-ATP synthase can reverse, hydrolysing ATP to pump protons out of the mitochondrial matrix. Although this activity can deplete ATP and precipitate cell death, it is limited by the mitochondrial protein IF(1), an endogenous F(1)F(o)-ATPase inhibitor. IF(1), therefore, preserves ATP at the expense of Deltapsi(m). Despite a wealth of detailed knowledge on the biochemistry of the interaction of IF(1) and the F(1)F(o)-ATPase, little is known about its physiological activity. Emerging research suggests that IF(1) has a wider ranging impact on mitochondrial structure and function than previously thought.


PLOS ONE | 2010

Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity.

Carlo Alberto Rossi; Michela Pozzobon; Andrea Ditadi; Karolina Archacka; Annalisa Gastaldello; Marta Sanna; Chiara Franzin; Alberto Malerba; Gabriella Milan; Mara Cananzi; Stefano Schiaffino; Michelangelo Campanella; Roberto Vettor; Paolo De Coppi

Satellite cells (SCs) represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB) muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC) present in major proportion (∼75%) and the high proliferative clones (HPC), present instead in minor amount (∼25%). LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (ΔΨm), ATP balance and Reactive Oxygen Species (ROS) generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described.


Autophagy | 2014

TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control

Jemma Gatliff; Daniel East; James Crosby; Rosella Abeti; Robert J. Harvey; William J. Craigen; Peter J. Parker; Michelangelo Campanella

The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltage-dependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1.


Cell Death & Differentiation | 2013

IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling

Dominique Faccenda; Choon Tan; Andreas Seraphim; Michael R. Duchen; Michelangelo Campanella

Mitochondrial structure has a central role both in energy conversion and in the regulation of cell death. We have previously shown that IF1 protects cells from necrotic cell death and supports cristae structure by promoting the oligomerisation of the F1Fo-ATPsynthase. As IF1 is upregulated in a large proportion of human cancers, we have here explored its contribution to the progression of apoptosis and report that an increased expression of IF1, relative to the F1Fo-ATPsynthase, protects cells from apoptotic death. We show that IF1 expression serves as a checkpoint for the release of Cytochrome c (Cyt c) and hence the completion of the apoptotic program. We show that the progression of apoptosis engages an amplification pathway mediated by: (i) Cyt c-dependent release of ER Ca2+, (ii) Ca2+-dependent recruitment of the GTPase Dynamin-related protein 1 (Drp1), (iii) Bax insertion into the outer mitochondrial membrane and (iv) further release of Cyt c. This pathway is accelerated by suppression of IF1 and delayed by its overexpression. IF1 overexpression is associated with the preservation of mitochondrial morphology and ultrastructure, consistent with a central role for IF1 as a determinant of the inner membrane architecture and with the role of mitochondrial ultrastructure in the regulation of Cyt c release. These data suggest that IF1 is an antiapoptotic and potentially tumorigenic factor and may be a valuable predictor of responsiveness to chemotherapy.


Journal of Biological Chemistry | 2007

Mitochondrial ND5 gene variation associated with encephalomyopathy and mitochondrial ATP consumption.

Matthew McKenzie; Danae Liolitsa; Natalya Akinshina; Michelangelo Campanella; Sanjay M. Sisodiya; Ian Hargreaves; Niranjanan Nirmalananthan; Mary G. Sweeney; Patrick M. Abou-Sleiman; Nicholas W. Wood; Michael G. Hanna; Michael R. Duchen

Mitochondrial encephalomyopathy and lactic acidosis with strokelike episodes (MELAS) is a severe young onset stroke disorder without effective treatment. We have identified a MELAS patient harboring a 13528A→G mitochondrial DNA (mtDNA) mutation in the Complex I ND5 gene. This mutation was homoplasmic in mtDNA from patient muscle and nearly homoplasmic (99.9%) in blood. Fibroblasts from the patient exhibited decreased mitochondrial membrane potential (Δψm) and increased lactate production, consistent with impaired mitochondrial function. Transfer of patient mtDNA to a new nuclear background using transmitochondrial cybrid fusions confirmed the pathogenicity of the 13528A→G mutation; Complex I-linked respiration and Δψm were both significantly reduced in patient mtDNA cybrids compared with controls. Inhibition of the adenine nucleotide translocase or the F1F0-ATPase with bongkrekic acid or oligomycin caused a loss of potential in patient mtDNA cybrid mitochondria, indicating a requirement for glycolytically generated ATP to maintain Δψm. This was confirmed by inhibition of glycolysis with 2-deoxy-d-glucose, which caused depletion of ATP and mitochondrial depolarization in patient mtDNA cybrids. These data suggest that in response to impaired respiration due to the mtDNA mutation, mitochondria consume ATP to maintain Δψm, representing a potential pathophysiological mechanism in human mitochondrial disease.

Collaboration


Dive into the Michelangelo Campanella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel East

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jemma Gatliff

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dhvanit I. Shah

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge