Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Baglioni is active.

Publication


Featured researches published by Michele Baglioni.


Journal of Colloid and Interface Science | 2015

An amine-oxide surfactant-based microemulsion for the cleaning of works of art

Michele Baglioni; Yareli Jáidar Benavides; Debora Berti; Rodorico Giorgi; Uwe Keiderling; Piero Baglioni

Surfactant-based aqueous fluids, such as micellar solutions and microemulsions, are effective, safe and selective media for cleaning operations in conservation of cultural heritage. The search for better-performing systems and eco-friendly cleaning systems is currently a major goal in conservation science. We report here on a ternary o/w microemulsion, composed of diethyl carbonate (DC) as the oil phase and N,N-Dimethyldodecan-1-amine oxide (DDAO) as the surfactant. DDAO is a well known and widely used detergent and solubilizing agent, selected here for its degradability and eco-compatibility. Due to its nonionic/cationic nature, it can be used also when nonionic-based formulations become ineffective because of clouding and phase separation. Moreover, DDAO is insensitive to the presence of divalent metal ions, usually abundant in wall paintings substrates. Small-Angle Neutron Scattering (SANS) provided detailed information about the nanostructure of the surfactant aggregates. Finally, the cleaning effectiveness of the nanofluid was assessed both on fresco mock-ups and on real wall paintings conserved in the archeological site of Tulum, Mexico. Here, conservators successfully used the microemulsion to remove naturally aged films of complex polymer mixtures from the works of art surface.


Soft Matter | 2014

Nanostructured fluids from degradable nonionic surfactants for the cleaning of works of art from polymer contaminants

Michele Baglioni; Martina Raudino; Debora Berti; Uwe Keiderling; Romain Bordes; Krister Holmberg; Piero Baglioni

Nanostructured fluids containing anionic surfactants are among the best performing systems for the cleaning of works of art. Though efficient, their application may result in the formation of a precipitate, due to the combination with divalent cations that might leach out from the artifact. We propose here two new aqueous formulations based on nonionic surfactants, which are non-toxic, readily biodegradable and insensitive to the presence of divalent ions. The cleaning properties of water-nonionic surfactant-2-butanone (MEK) were assessed both on model surfaces and on a XIII century fresco that could not be cleaned using conventional methods. Structural information on nanofluids has been gathered by means of small-angle neutron scattering, dynamic light scattering and nuclear magnetic resonance with diffusion monitoring. Beside the above-mentioned advantages, these formulations turned out to be considerably more efficient in the removal of polymer coatings than those based on anionic surfactants. Our results indicate that the cleaning process most likely consists of two steps: initially, the polymer film is swollen by the MEK dissolved in the continuous domain of the nanofluid; in the second stage, surfactant aggregates come into play by promoting the removal of the polymer film with a detergency-like mechanism. The efficiency can be tuned by the composition and nature of amphiphiles and is promoted by working as close as possible to the cloud point of the formulation, where the second step proceeds at maximum rate.


ACS Applied Materials & Interfaces | 2015

Polymer Films Removed from Solid Surfaces by Nanostructured Fluids: Microscopic Mechanism and Implications for the Conservation of Cultural Heritage

Martina Raudino; Giulia Selvolini; Costanza Montis; Michele Baglioni; Massimo Bonini; Debora Berti; Piero Baglioni

Complex fluids based on amphiphilic formulations are emerging, particularly in the field of conservation of works of art, as effective and safe liquid media for the removal of hydrophobic polymeric coatings. The comprehension of the cleaning mechanism is key to designing tailored fluids for this purpose. However, the interaction between nanostructured fluids and hydrophobic polymer films is still poorly understood. In this study, we show how the combination of confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) provides interesting and complementary insight into this process. We focused on the interaction between an ethyl methacrylate/methyl acrylate 70:30 copolymer film deposited onto a glass surface and a water/nonionic surfactant/2-butanone (MEK) ternary system, with MEK being a good solvent and water being a nonsolvent for the polymer. Our results indicate a synergy between the organic solvent and the surfactant assemblies: MEK rapidly swells the outer layers of the polymer film allowing for the subsequent diffusion of solvent molecules, while the amphiphile decreases the interfacial energy between the polymeric coating and the liquid phase, favoring dewetting and dispersion of swollen polymer droplets in the aqueous phase. The chemical nature of the surfactant and the microstructure of the assemblies determine both the kinetics and the overall efficiency of polymer removal, as assessed by comparing the behavior of similar formulations containing an anionic surfactant (sodium dodecyl sulfate, SDS).


Analytical and Bioanalytical Chemistry | 2017

Nanofluids and chemical highly retentive hydrogels for controlled and selective removal of overpaintings and undesired graffiti from street art

Rodorico Giorgi; Michele Baglioni; Piero Baglioni

One of the main problems connected to the conservation of street art is the selective removal of overlying undesired graffiti, i.e., drawings and tags. Unfortunately, selective and controlled removal of graffiti and overpaintings from street art is almost unachievable using traditional methodologies. Recently, the use of nanofluids confined in highly retentive pHEMA/PVP semi-interpenetrated polymer networks was proposed. Here, we report on the selective removal of acrylic overpaintings from a layer of acrylic paint on mortar mockups in laboratory tests. The results of the cleaning tests were characterized by visual and photographic observation, optical microscopy, and FT-IR microreflectance investigation. It was shown that this methodology represents a major advancement with respect to the use of nonconfined neat solvents.


Angewandte Chemie | 2018

Polymer Film Dewetting by Water/Surfactant/Good‐Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage

Michele Baglioni; Costanza Montis; David Chelazzi; Rodorico Giorgi; Debora Berti; Piero Baglioni

Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the Tg of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs.


Archive | 2016

Confined Aqueous Media for the Cleaning of Cultural Heritage: Innovative Gels and Amphiphile-Based Nanofluids

Nicole Bonelli; David Chelazzi; Michele Baglioni; Rodorico Giorgi; Piero Baglioni

This chapter presents the applicative potentialities of gels for the cleaning of artworks surfaces. In particular, innovative physical and chemical gels, with high water retention capability, high responsiveness to external stimuli, and suitable mechanical properties, are described. The high solvent retention capability and the specific mechanical properties of these gels allow the safe cleaning of artifacts, even including water-sensitive substrates. In fact, the cleaning action is limited to the contact surface, and the complete removal of soil is achieved while avoiding solvent spreading and absorption within the substrate. In particular, the use of gels based on semi-interpenetrating (IPN) polymer networks provides great advantages because these gels are able to load water-based detergent systems, such as micellar solutions and microemulsions, which are effective in removing synthetic adhesives and highly hydrophobic detrimental materials. The combination of semi-IPN polymer networks with these detergents allows the cleaning of sensitive substrates such as canvas paintings and manuscripts.


Materials | 2018

A Triton X-100-Based Microemulsion for the Removal of Hydrophobic Materials from Works of Art: SAXS Characterization and Application

Michele Baglioni; Giovanna Poggi; Giulia Ciolli; Emiliano Fratini; Rodorico Giorgi; Piero Baglioni

The removal of hydrophobic materials from a porous support, such as wax stains on wall paintings, is particularly challenging. In this context, traditional methods display several drawbacks. The limitations of these methods can be overcome by amphiphile-based aqueous nanostructured fluids, such as micellar solutions and microemulsions. In this study, a microemulsion for the removal of wax spots from artistic surfaces was formulated. The nanostructured fluid includes a non-ionic surfactant, i.e., Triton X-100, and two apolar solvents, namely p-xylene and n-nonane. The solvents were selected on the basis of solubility tests of three waxes in several organic solvents. The nanostructured fluid was characterized by means of small-angle X-rays scattering (SAXS) and the information about micelle structure was used to understand the interaction between the microemulsion and the selected waxes. The microemulsion was then tested during the restoration of the frescoes in the Major Chapel of the Santa Croce Basilica in Florence, Italy. After some preliminary tests on fresco mockups reproduced in the laboratory, the nanostructured fluid was successfully used to clean some wax deposits from the real paintings, hardly removable with traditional physico-mechanical methods.


ACS Applied Materials & Interfaces | 2018

Complex Fluids Confined into Semi-interpenetrated Chemical Hydrogels for the Cleaning of Classic Art: A Rheological and SAXS Study

Michele Baglioni; Joana Domingues; Emiliano Carretti; Emiliano Fratini; David Chelazzi; Rodorico Giorgi; Piero Baglioni

The removal of aged varnishes from the surface of easel paintings using the common conservation practice (i.e., by means of organic solvents) often causes pigment leaching, paint loss, and varnish redeposition. Recently, we proposed an innovative cleaning system based on semi-interpenetrated polymer networks (SIPNs), where a covalently cross-linked poly(hydroxyethyl methacrylate), pHEMA, network is interpenetrated by linear chains of poly(vinylpyrrolidone), PVP. This chemical gel, simply loaded with water, was designed to safely remove surface dirt from water-sensitive artifacts. Here, we modified the SIPN to confine complex cleaning fluids, able to remove aged varnishes. These complex fluids are 5-component water-based nanostructured systems, where organic solvents are partially dispersed as nanosized droplets in a continuous aqueous phase, using surfactants. The rheological behavior of the SIPN and the nanostructure of the fluids loaded into the gel were investigated, and the mechanical behavior of the gel was optimized by varying both the cross-linking density and the polymer concentration. Once loaded with the complex fluids, the hydrogels maintained their structural and mechanical features, while the complex fluids showed a decrease in the size of the dispersed solvent droplets. Two challenging case studies have been selected to evaluate the applicability of the SIPN hydrogels loaded with the complex fluids. The first case study concerns the removal of a surface layer composed by an aged brown resinous patina from a wood panel, the second case study concerns the removal of a homogeneous layer of yellowed varnish from a watercolor on paper. The results show that the confinement of complex fluids into gels allowed unprecedented removal of varnishes from artifacts overcoming the limitations of traditional cleaning methods.


Accounts of Chemical Research | 2010

New Methodologies for the Conservation of Cultural Heritage: Micellar Solutions, Microemulsions, and Hydroxide Nanoparticles

Rodorico Giorgi; Michele Baglioni; Debora Berti; Piero Baglioni


Nanoscale | 2010

Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale

Michele Baglioni; Doris Rengstl; Debora Berti; Massimo Bonini; Rodorico Giorgi; Piero Baglioni

Collaboration


Dive into the Michele Baglioni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge