Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Bolla is active.

Publication


Featured researches published by Michele Bolla.


Combustion Science and Technology | 2013

Soot Formation Modeling of n-Heptane Sprays Under Diesel Engine Conditions Using the Conditional Moment Closure Approach

Michele Bolla; Yuri M. Wright; Konstantinos Boulouchos; Giulio Borghesi; Epaminondas Mastorakos

Numerical simulations of soot formation of n-heptane autoigniting spray in a constant-volume vessel under diesel engine conditions with different ambient densities (14.8 and 30 kg/m3) and ambient oxygen concentrations (8–21% O2 mol fraction) were performed using two-dimensional, first-order conditional moment closure (CMC). Soot formation was modeled with a semiempirical two-equation model that considers simultaneous soot particle inception, surface growth, coagulation, and oxidation by O2 and OH. Soot radiation was accounted for with an optical-thin formulation. Results are compared to experimental data by means of ignition delay time, lift-off length, and soot volume fraction distribution. Good predictions of ignition delay and lift-off for all nine cases are achieved. High volume fraction soot location and semi-quantitative distribution have been well described even with this comparatively simple soot model. The findings suggest that the conditional moment closure approach is a promising framework for soot modeling under diesel engine conditions.


Combustion Theory and Modelling | 2014

Influence of turbulence-chemistry interaction for n-heptane spray combustion under diesel engine conditions with emphasis on soot formation and oxidation

Michele Bolla; Daniele Farrace; Yuri M. Wright; Konstantinos Boulouchos; Epaminondas Mastorakos

The influence of the turbulence–chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8‑21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results.


SAE International journal of engines | 2013

Simulations of Diesel Sprays Using the Conditional Moment Closure Model

Michele Bolla; Thordur Gudmundsson; Yuri M. Wright; Konstantinos Boulouchos

Numerical simulations of diesel sprays in a constant-volume vessel have been performed with the conditional moment closure (CMC) combustion model for a broad range of conditions. On the oxidizer side these include variations in ambient temperature (800-1100 K), oxygen volume fraction (15-21 %) and density (7.3-58.5 kg/m) and on the fuel side variation in injector orifice diameter (50-363 μm) and fuel pressure (600-1900 bar); in total 22 conditions. Results are compared to experimental data by means of ignition delay and flame lift-off length (LOL). Good agreement for both quantities is reported for the vast majority of conditions without any changes to model constants: the variations relating to the air side are quantitatively accurately predicted; for the fuel side (viz. orifice diameter and injection pressure) the trends are qualitatively well reproduced. For the reference case, three different n-heptane chemical mechanisms (with 22, 29 and 67 species) have further been compared with respect to the ignition process and the subsequent flame stabilization and the flame structure is compared to conceptual models presented in the literature. At those conditions all three mechanisms showed comparable results. Based on the findings reported, CMC is seen as a highly promising approach to model spray combustion for a very broad range of diesel engine relevant conditions.


SAE International journal of engines | 2013

Predicting In-Cylinder Soot in a Heavy-Duty Diesel Engine for Variations in SOI and TDC Temperature Using the Conditional Moment Closure Model

Daniele Farrace; Michele Bolla; Yuri M. Wright; Konstantinos Boulouchos

Numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia National Laboratories have been performed with the multidimensional conditional moment closure (CMC) model using a reduced n-heptane chemical mechanism coupled with a two-equation soot model. Simulation results are compared to the high-fidelity experimental data by means of pressure traces, apparent heat release rate (AHRR) and time-resolved in-cylinder soot mass derived from optical soot luminosity and multiple wavelength pyrometry in conjunction with high speed soot cloud imaging. In addition, spatial distributions of soot relevant quantities are given for several operating conditions.


SAE International journal of engines | 2016

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

Scott A. Skeen; Julien Manin; Lyle M. Pickett; Emre Cenker; Gilles Bruneaux; Katsufumi Kondo; Tets Aizawa; Fredrik Ree Westlye; Kristine Dalen; Anders Ivarsson; Tiemin Xuan; J.M. García-Oliver; Yuanjiang Pei; Sibendu Som; Wang Hu; Rolf D. Reitz; Tommaso Lucchini; Gianluca D'Errico; Daniele Farrace; Sushant S. Pandurangi; Yuri M. Wright; Muhammad Aqib Chishty; Michele Bolla; Evatt R. Hawkes

The following individuals and funding agencies are acknowledged for their support. The authors from DTU acknowledge the Technical University of Denmark, Danish Strategic Research Council, and MAN Diesel & Turbo University of Wisconsin: Financial support provided by the Princeton Combustion Energy Frontier Research Center. ETH Zurich: Financial support from the Swiss Federal Office of Energy (grant no. SI/500818-01) and the Swiss Competence Center for Energy and Mobility (CCEM project “In-cylinder emission reduction”) is gratefully acknowledged. Argonne National Labs: Work was funded by U.S. DOE Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357. We also gratefully acknowledge the computing resources provided on Fusion, a computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. Sandia National Labs, Combustion Research Facility: Work was supported by the U.S. Department of Energy, Office of Vehicle Technologies. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DEAC04-94AL85000. Chris Carlen and Dave Cicone are gratefully acknowledged for technical assistance. The authors from ANL and SNL also wish to thank Gurpreet Singh and Leo Breton, program managers at U.S. DOE, for their support.


International Journal of Engine Research | 2017

Onset and progression of soot in high-pressure n-dodecane sprays under diesel engine conditions

Sushant S. Pandurangi; Michele Bolla; Yuri M. Wright; Konstantinos Boulouchos; Scott A. Skeen; Julien Manin; Lyle M. Pickett

Soot onset in n-dodecane sprays is investigated both experimentally, by means of high-speed imaging data from the Sandia spray combustion vessel, and numerically, using the conditional moment closure combustion model and an integrated two-equation soot model in a Reynolds-averaged Navier–Stokes framework. Five operating conditions representative of modern diesel engines are studied at constant density (22.8 kg/m3) with variations in ambient oxygen concentration and temperature. The reference case at 15% O2 and 900 K is compared with measurements in terms of the evolving soot mass distribution and spatiotemporal distributions of formaldehyde and polycyclic aromatic hydrocarbons obtained by 355-nm laser-induced fluorescence (polycyclic aromatic hydrocarbons represented by C2H2 in simulation) and soot optical thickness (KL) signal obtained by diffused back-illumination extinction imaging. All operating points are validated in terms of ignition delay and lift-off length, soot onset time and location, soot mass evolution, and peak location. Measurements show that time lag between ignition and soot onset is considerably increased by a reduction in ambient oxygen or temperature. The trend of this time lag is captured very well by the simulations, as is the evolving axial distribution of soot, despite the simple soot model employed. Building on the good agreement between spatiotemporal distributions in experiment and simulation, further results from the latter are extracted to provide insight into relevant processes. The advancing soot tip lags behind the fuel–vapor spray tip due to soot oxidation. Tracking the Lagrangian time history of notional fluid particles from the soot onset location back to the injector orifice reveals that their trajectories evolve along rich conditions (φ > 1.5) throughout the entire path. Overall, novel insights obtained from experiments with respect to soot and soot precursor evolutions are complemented by simulations using the integrated conditional moment closure/soot modeling approach, showing encouraging results for prediction and understanding of transient soot processes in high-pressure diesel sprays.


SAE 2014 International Powertrain, Fuels & Lubricants Meeting | 2014

Simulations of In-Cylinder Processes in a Diesel Engine Operated with Post-Injections Using an Extended CMC Model

Nicolò Frapolli; Michele Bolla; Konstantinos Boulouchos; Yuri M. Wright

In this study, numerical simulations of in-cylinder processes associated to fuel post-injection in a diesel engine operated at Low Temperature Combustion (LTC) have been performed. An extended Conditional Moment Closure (CMC) model capable of accounting for an arbitrary number of subsequent injections has been employed: instead of a three-feed system, the problem has been described as a sequential two-feed system, using the total mixture fraction as the conditioning scalar. A reduced n-heptane chemical mechanism coupled with a two-equation soot model is employed. Numerical results have been validated with measurements from the optically accessible heavy-duty diesel engine installed at Sandia National Laboratories by comparing apparent heat release rate (AHRR) and in-cylinder soot mass evolutions for three different start of main injection, and a wide range of post injection dwell times. Good agreement with the experimental results is reported for the AHRR, while qualitative reproduction of in-cylinder soot mass evolutions have been obtained, the computed soot mass is considerably underestimated. Subsequently, numerical investigations concerning the effects of different post injection timings on soot formation and oxidation processes are presented, with particular emphasis on the role of the increased mixing by post injections. The simulation results revealed two main competing phenomena which govern the evolution of the in-cylinder soot mass during and after post-injections: I) the accelerated oxidation of the soot from the main injection, and II) the dependency of soot formed during post-injection on the in-cylinder temperatures. Overall, the findings suggest that the extended CMC framework is a promising candidate for the simulation of multiple injections in diesel engines, allowing for deeper understandings of the associated in-cylinder processes.


SAE 2014 International Powertrain, Fuels & Lubricants Meeting | 2014

CMC Model Applied to Marine Diesel Spray Combustion: Influence of Fuel Evaporation Terms

Aleš Srna; Michele Bolla; Konstantinos Boulouchos; Yuri M. Wright

This study presents an application of the conditional moment closure (CMC) combustion model to marine diesel sprays. In particular, the influence of fuel evaporation terms has been investigated for the CMC modeling framework. This is motivated by the fact that substantial overlap between the dense fuel spray and flame area is encountered for sprays in typical large two-stroke marine diesel engines which employ fuel injectors with orifice diameters of the order of one millimeter. Simulation results are first validated by means of experimental data from the Wärtsilä optically accessible marine spray combustion chamber in terms of non-reactive macroscopic spray development. Subsequently, reactive calculations are carried out and validated in terms of ignition delay time, ignition location, flame lift-off length and temporal evolution of the flame region. Finally, the influence of droplet terms on spray combustion is analyzed in detail. The effect of evaporation into the mixture fraction variance transport equation was seen to play a prominent role concerning autoignition and flame stabilization: both ignition delay and flame lift-off length are considerably increased when evaporation effects are included. This was found to be attributed to the strong spatial overlap between evaporation and combustion – typical for marine sprays – leading to an increase in the local scalar dissipation rate in the evaporating region. Overall, inclusion of evaporation terms resulted in improved agreement with experimental data. These findings are contrary to previous investigations for typical automotive diesel sprays reporting only a minor influence of evaporation. Consequently, this study constitutes an extension of former analyses to large marine fuel injection configurations and emphasizes the importance of such effects for the simulation of marine diesel sprays.


International Journal of Engine Research | 2018

NOx emissions in direct injection diesel engines – part 1: Development of a phenomenological NOx model using experiments and three-dimensional computational fluid dynamics:

Clemens Brückner; Sushant S. Pandurangi; Panagiotis Kyrtatos; Michele Bolla; Yuri M. Wright; Konstantinos Boulouchos

There exists a well-established correlation of exhaust NOx emissions arising from diesel engines with the adiabatic flame temperature, in particular for conventional (i.e. short ignition delay, diffusion combustion-dominated) operating conditions. Most published NOx emission models rely on this correlation. However, numerous experimental studies have identified operating conditions where this correlation fails to capture the exhaust NOx trend. In this work, a novel phenomenological NOx model concept is introduced, including a first successful validation against experimental data. The model development is based on experimental observations and is supported by three-dimensional computational fluid dynamics computations, strengthening the understanding of the underlying mechanisms leading to the discrepancy between the adiabatic flame temperature and exhaust NOx trend. For long ignition delay operating conditions, the improved mixture preparation before ignition leads to reduced mixing rates during and after combustion. Both the improved mixture preparation before ignition and the instantaneous increase of mass observed above 2000 K after start of combustion are due to compression heating of the burned gases. Key features of the model are improved description of mixture distribution at start of combustion, NOx formed in products of premixed burn, different physical treatments of premixed and diffusion sourced products, and inherent consideration of burned gas compression heating. Model results capture the NOx emissions for conventional diesel combustion, as well as for operating conditions where the NOx emissions do not follow the adiabatic flame temperature trend. Moreover, the results show that the contribution of NOx from products from premixed burn and the consideration of compression heating effects on burned (post-flame) gases are essential to capture the NOx emissions under the latter conditions.


Combustion Theory and Modelling | 2018

A LES-CMC formulation for premixed flames including differential diffusion

Daniele Farrace; Kyoungseoun Chung; Michele Bolla; Yuri M. Wright; Konstantinos Boulouchos; Epaminondas Mastorakos

A finite volume large eddy simulation–conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane–air flame with Leeff = 0.99 and a lean hydrogen–air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane–air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.

Collaboration


Dive into the Michele Bolla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evatt R. Hawkes

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Daniele Farrace

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Sanghoon Kook

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Yuanjiang Pei

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Aleš Srna

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Muhammad Aqib Chishty

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge