Michèle Bouloy
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michèle Bouloy.
Veterinary Research | 2010
Michel Pépin; Michèle Bouloy; Brian H. Bird; Alan Kemp; Janusz T. Paweska
Rift Valley fever (RVF) virus is an arbovirus in the Bunyaviridae family that, from phylogenetic analysis, appears to have first emerged in the mid-19th century and was only identified at the begininning of the 1930s in the Rift Valley region of Kenya. Despite being an arbovirus with a relatively simple but temporally and geographically stable genome, this zoonotic virus has already demonstrated a real capacity for emerging in new territories, as exemplified by the outbreaks in Egypt (1977), Western Africa (1988) and the Arabian Peninsula (2000), or for re-emerging after long periods of silence as observed very recently in Kenya and South Africa. The presence of competent vectors in countries previously free of RVF, the high viral titres in viraemic animals and the global changes in climate, travel and trade all contribute to make this virus a threat that must not be neglected as the consequences of RVF are dramatic, both for human and animal health. In this review, we present the latest advances in RVF virus research. In spite of this renewed interest, aspects of the epidemiology of RVF virus are still not fully understood and safe, effective vaccines are still not freely available for protecting humans and livestock against the dramatic consequences of this virus.
Journal of Virology | 2001
Michèle Bouloy; Christian Janzen; Pierre Vialat; Huot Khun; Jovan Pavlovic; Michel Huerre; Otto Haller
ABSTRACT Rift Valley fever virus (RVFV), a phlebovirus of the family Bunyaviridae, is a major public health threat in Egypt and sub-Saharan Africa. The viral and host cellular factors that contribute to RVFV virulence and pathogenicity are still poorly understood. All pathogenic RVFV strains direct the synthesis of a nonstructural phosphoprotein (NSs) that is encoded by the smallest (S) segment of the tripartite genome and has an undefined accessory function. In this report, we show that MP12 and clone 13, two attenuated RVFV strains with mutations in the NSs gene, were highly virulent in IFNAR−/− mice lacking the alpha/beta interferon (IFN-α/β) receptor but remained attenuated in IFN-γ receptor-deficient mice. Both attenuated strains proved to be excellent inducers of early IFN-α/β production. In contrast, the virulent strain ZH548 failed to induce detectable amounts of IFN-α/β and replicated extensively in both IFN-competent and IFN-deficient mice. Clone 13 has a defective NSs gene with a large in-frame deletion. This defect in the NSs gene results in expression of a truncated protein which is rapidly degraded. To investigate whether the presence of the wild-type NSs gene correlated with inhibition of IFN-α/β production, we infected susceptible IFNAR−/− mice with S gene reassortant viruses. When the S segment of ZH548 was replaced by that of clone 13, the resulting reassortants became strong IFN inducers. When the defective S segment of clone 13 was exchanged with the wild-type S segment of ZH548, the reassortant virus lost the capacity to stimulate IFN-α/β production. These results demonstrate that the ability of RVFV to inhibit IFN-α/β production correlates with viral virulence and suggest that the accessory protein NSs is an IFN antagonist.
Journal of Virology | 2004
Agnès Billecocq; Martin Spiegel; Pierre Vialat; Alain Kohl; Friedemann Weber; Michèle Bouloy; Otto Haller
ABSTRACT Rift Valley fever virus (RVFV) is an important cause of epizootics and epidemics in Africa and a potential agent of bioterrorism. A better understanding of the factors that govern RVFV virulence and pathogenicity is required, given the urgent need for antiviral therapies and safe vaccines. We have previously shown that RVFV strains with mutations in the NSs gene are excellent inducers of α/β interferon (IFN-α/β) and are highly attenuated in mice. Here, we demonstrate that NSs is sufficient to block IFN-β gene expression at the transcriptional level. In cells transiently expressing NSs, IFN-β transcripts were not inducible by viral infection or by transfection of poly(I:C). NSs with anti-IFN activity accumulated in the nucleus. In contrast, mutant forms of NSs that had lost their IFN-inhibiting activity remained in the cytoplasm, indicating that nuclear localization plays a role. IFN synthesis is regulated by specific transcription factors, including interferon regulatory factor (IRF-3), NF-κB, and AP-1. In the presence of NSs, IRF-3 was still activated and moved to the nucleus. Likewise, NF-κB and AP-1 were activated normally, as shown in electrophoretic mobility shift assays. Moreover, NSs was found to inhibit transcriptional activity of a constitutive promoter, in agreement with recent findings showing that NSs targets the basal cellular transcription factor TFIIH. The present results suggest that NSs, unlike other viral IFN antagonists, does not inhibit IFN-specific transcription factors but blocks IFN gene expression at a subsequent step.
Cell | 2004
Nicolas Le May; Sandy Dubaele; Luca Proietti De Santis; Agnès Billecocq; Michèle Bouloy; Jean-Marc Egly
The Rift Valley fever virus (RVFV) is the causative agent of fatal hemorrhagic fever in humans and acute hepatitis in ruminants. We found that infection by RVFV leads to a rapid and drastic suppression of host cellular RNA synthesis that parallels a decrease of the TFIIH transcription factor cellular concentration. Using yeast two hybrid system, recombinant technology, and confocal microscopy, we further demonstrated that the nonstructural viral NSs protein interacts with the p44 component of TFIIH to form nuclear filamentous structures that also contain XPB subunit of TFIIH. By competing with XPD, the natural partner of p44 within TFIIH, and sequestering p44 and XPB subunits, NSs prevents the assembly of TFIIH subunits, thus destabilizing the normal host cell life. These observations shed light on the mechanism utilized by RVFV to evade the host response.
PLOS Pathogens | 2008
Nicolas Le May; Zeyni Mansuroglu; Psylvia Léger; Thibaut Josse; Guillaume Blot; Agnès Billecocq; Ramon Flick; Yves Jacob; Eliette Bonnefoy; Michèle Bouloy
Rift Valley fever virus (RVFV) nonstructural protein NSs acts as the major determinant of virulence by antagonizing interferon β (IFN-β) gene expression. We demonstrate here that NSs interacts with the host protein SAP30, which belongs to Sin3A/NCoR/HDACs repressor complexes and interacts with the transcription factor YY1 that regulates IFN-β gene expression. Using confocal microscopy and chromatin immunoprecipitation, we show that SAP30, YY1, and Sin3A-associated corepressor factors strongly colocalize with nuclear NSs filaments and that NSs, SAP30 and Sin3A-associated factors are recruited on the IFN-β promoter through YY1, inhibiting CBP recruitment, histone acetylation, and transcriptional activation. To ascertain the role of SAP30, we produced, by reverse genetics, a recombinant RVFV in which the interacting domain in NSs was deleted. The virus was unable to inhibit the IFN response and was avirulent for mice. We discuss here the strategy developed by the highly pathogenic RVFV to evade the host antiviral response, affecting nuclear organization and IFN-β promoter chromatin structure.
Current Molecular Medicine | 2005
Ramon Flick; Michèle Bouloy
Rift Valley fever is considered to be one of the most important viral zoonoses in Africa. In 2000, the Rift valley fever virus spread to the Arabian Peninsula and caused two simultaneous outbreaks in Yemen and Saudi Arabia. It is transmitted to ruminants and to humans by mosquitoes. The viral agent is an arbovirus, which belongs to the Phlebovirus genus in the Bunyaviridae family. This family of viruses comprises more than 300 members grouped into five genera: Orthobunyavirus, Phlebovirus, Hantavirus, Nairovirus, and Tospovirus. Several members of the Bunyaviridae family are responsible for fatal hemorrhagic fevers: Rift Valley fever virus (Phlebovirus), Crimean-Congo hemorrhagic fever virus (Nairovirus), Hantaan, Sin Nombre and related viruses (Hantavirus), and recently Garissa, now identified as Ngari virus (Orthobunyavirus). Here are reviewed recent advances in Rift Valley fever virus, its epidemiology, molecular biology and focus on recent data on the interactions between viral and cellular proteins, which help to understand the molecular mechanisms utilized by the virus to circumvent the host cellular response.
Journal of Clinical Microbiology | 2001
Stephan Garcia; Jean Marc Crance; Agnès Billecocq; Andre Peinnequin; Alain Jouan; Michèle Bouloy; Daniel Garin
ABSTRACT The Rift Valley fever virus (RVFV), a member of the genusPhlebovirus (family Bunyaviridae) is an enveloped negative-strand RNA virus with a tripartite genome. Until 2000, RVFV circulation was limited to the African continent, but the recent deadly outbreak in the Arabian Peninsula dramatically illustrated the need for rapid diagnostic methods, effective treatments, and prophylaxis. A method for quantifying the small RNA segment by a real-time detection reverse transcription (RT)-PCR using TaqMan technology and targeting the nonstructural protein-coding region was developed, and primers and a probe were designed. After optimization of the amplification reaction and establishment of a calibration curve with synthetic RNA transcribed in vitro from a plasmid containing the gene of interest, real-time RT-PCR was assessed with samples consisting of RVFV from infected Vero cells. The method was found to be specific for RVFV, and it was successfully applied to the detection of the RVFV genome in animal sera infected with RVFV as well as to the assessment of the efficiency of various drugs (ribavirin, alpha interferon, 6-azauridine, and glycyrrhizin) for antiviral activity. Altogether, the results indicated a strong correlation between the infectious virus titer and the amount of viral genome assayed by real time RT-PCR. This novel method could be of great interest for the rapid diagnosis and screening of new antiviral compounds, as it is sensitive and time saving and does not require manipulation of infectious material.
Eurosurveillance | 2010
Helena C. Maltezou; L. Andonova; R Andraghetti; Michèle Bouloy; Onder Ergonul; Frans Jongejan; N. Kalvatchev; Stuart T. Nichol; Matthias Niedrig; A. Platonov; Gail Thomson; Katrin Leitmeyer; Hervé Zeller
During the last decade Crimean-Congo hemorrhagic fever (CCHF) emerged and/or re-emerged in several Balkan countries, Turkey, southwestern regions of the Russian Federation, and the Ukraine, with considerable high fatality rates. Reasons for re-emergence of CCHF include climate and anthropogenic factors such as changes in land use, agricultural practices or hunting activities, movement of livestock that may influence host-tick-virus dynamics. In order to be able to design prevention and control measures targeted at the disease, mapping of endemic areas and risk assessment for CCHF in Europe should be completed. Furthermore, areas at risk for further CCHF expansion should be identified and human, vector and animal surveillance be strengthened.
Journal of Virology | 2000
Pierre Vialat; Agnès Billecocq; Alain Kohl; Michèle Bouloy
ABSTRACT Unlike all the other Rift Valley fever virus strains (Bunyaviridae, Phlebovirus) studied so far, clone 13, a naturally attenuated virus, does not form the filaments composed of the NSs nonstructural protein in the nuclei of infected cells (R. Muller, J. F. Saluzzo, N. Lopez, T. Drier, M. Turell, J. Smith, and M. Bouloy, Am. J. Trop. Med. Hyg. 53:405–411, 1995). This defect is correlated with a large in-frame deletion in the NSs coding region of the S segment of the tripartite genome. Here, we show that the truncated NSs protein of clone 13 is expressed and remains in the cytoplasm, where it is degraded rapidly by the proteasome. Through the analysis of reassortants between clone 13 and a virulent strain, we localized the marker(s) of attenuation in the S segment of this attenuated virus. This result raises questions regarding the role of NSs in pathogenesis and highlights, for the first time in theBunyaviridae family, a major role of the S segment in virulence and attenuation, possibly associated with a defect in the nonstructural protein.
Vaccine | 2010
Baptiste Dungu; Ian Louw; Alison Lubisi; Pamela Hunter; Beate F. von Teichman; Michèle Bouloy
The efficacy and safety of the naturally attenuated Rift Valley Fever (RVF) Clone 13 vaccine were evaluated in ovines in three different experiments involving 38 ewes at different stages of pregnancy, their offsprings and four rams. In Experiment 1, 4 rams and a total of 13 pregnant ewes were vaccinated and monitored during vaccination and after a challenge with a virulent RVF virus. The ewes were vaccinated at either 50 or 100 days of pregnancy and some were challenged after lambing. In Experiment 2, nine oestrus-synchronized ewes were vaccinated at 50 days of pregnancy and challenged at 100 days of pregnancy together with 5 unvaccinated ewes at the same stage of pregnancy. In Experiment 3, 16 oestrus-synchronized ewes were vaccinated with 3 different doses of the RVF Clone 13 vaccine and challenged together with unvaccinated pregnant ewes at either 30 or 50 days of pregnancy. The results from the three experiments indicated that the vaccine did not induce clinical manifestation of RVF such as abortion in pregnant ewes, teratogeny in their offsprings, or pyrexia in all vaccinated animals. Vaccination with RVF Clone 13 vaccine also prevented clinical RVF following virulent challenge at different stages of pregnancy while unvaccinated control ewes showed pyrexia, aborted or died of RVF. A vaccine dose-response effect was also observed.
Collaboration
Dive into the Michèle Bouloy's collaboration.
Centre de coopération internationale en recherche agronomique pour le développement
View shared research outputs