Michele C. Loewen
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michele C. Loewen.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Judith Klein-Seetharaman; Philip J. Reeves; Michele C. Loewen; Getmanova Ev; J. Chung; Harald Schwalbe; P. E. Wright; H G Khorana
[α-15N]Lysine-labeled rhodopsin, prepared by expression of a synthetic gene in HEK293 cells, was investigated both by conventional and transverse relaxation optimized spectroscopy-type heteronuclear single quantum correlation spectroscopy. Whereas rhodopsin contains 11 lysines, 8 in cytoplasmic loops and 1 each in the C-terminal peptide sequence and the intradiscal and transmembrane domains, only a single sharp peak was observed in dodecyl maltoside micelles. This result did not change when dodecyl maltoside was replaced by octyl glucoside or octyl glucoside–phospholipid-mixed micelles. Additional signals of much lower and variable intensity appeared at temperatures above 20°C and under denaturing conditions. Application of the transverse relaxation optimized spectroscopy sequence resulted in sharpening of resonances but also losses of signal intensity. The single peak observed has been assigned to the C-terminal Lys-339 from the following lines of evidence. First, the signal is observed in HNCO spectra of rhodopsin, containing the labeled [13C]Ser-338/[15N]Lys-339 dipeptide. Second, addition of a monoclonal anti-rhodopsin antibody that binds to the C-terminal 8 aa of rhodopsin caused disappearance of the peak. Third, truncated rhodopsin lacking the C-terminal sequence Asp-330–Ala-348 showed no signal, whereas the enzymatically produced peptide fragment containing the above sequence showed the single peak. The results indicate motion in the backbone amide groups of rhodopsin at time scales depending on their location in the sequence. At the C terminus, conformational averaging occurs at the nanosecond time scale but varies from microsecond to millisecond in other parts of the primary sequence. The motions reflecting conformational exchange may be general for membrane proteins containing transmembrane helical bundles.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Chunhua Shi; Susan G. W. Kaminskyj; Sarah Caldwell; Michele C. Loewen
Cell-cell fusion is a fundamental process that facilitates a wide variety of biological events in organisms ranging from yeast to humans. However, relatively little is actually understood with respect to fusion mechanisms. In the model organism Saccharomyces cerevisiae, mating of opposite-type cells is triggered by pheromone activation of the G protein-coupled receptors, α-factor receptor (Ste2p) and a-factor receptor (Ste3p), leading to mitogen-activated protein kinase signaling, growth arrest, and cellular fusion events. Herein we now provide evidence of a role for these receptors in the later cell fusion stage of mating. In vitro assays demonstrated the ability of the receptors to promote mixing of proteoliposomes containing phosphatidylserine, potentially based on a pheromone-dependent interaction between Ste2p and Ste3p that was confirmed by tandem affinity purification and cellular pull-down assays. The cellular mating activity of Ste2p was subsequently probed in vivo. Notably, a receptor-null yeast strain expressing N-terminally truncated Ste2p yielded a phenotype demonstrating wild-type signaling but arrested mating. The arrested prezygotes showed evidence of some cell wall erosion but no membrane juxtaposition at the fusion site. Further, in vitro analyses correlated this mutation with loss of the interaction between Ste2p and Ste3p and inhibition of related lipid mixing. Overall, these results support a role for a complex between activated yeast pheromone receptors in later cell fusion stages of mating, possibly mediating events at the level of cell wall digestion and membrane juxtaposition before membrane fusion.
Journal of Biological Chemistry | 2014
Sai Prasad Pydi; Tyler Sobotkiewicz; Rohini Billakanti; Rajinder P. Bhullar; Michele C. Loewen; Prashen Chelikani
Background: T2Rs are activated by hundreds of bitter compounds; however, only five blockers are known. Results: T2R4 residues involved in binding to agonist quinine and two novel bitter blockers GABA and BCML were identified. Conclusion: Bitter blockers and agonists share the same orthosteric site in T2R4. Significance: Bitter blockers identified in this study have tremendous physiological and nutraceutical importance. In humans, the 25 bitter taste receptors (T2Rs) are activated by hundreds of structurally diverse bitter compounds. However, only five antagonists or bitter blockers are known. In this study, using molecular modeling guided site-directed mutagenesis, we elucidated the ligand-binding pocket of T2R4. We found seven amino acids located in the extracellular side of transmembrane 3 (TM3), TM4, extracellular loop 2 (ECL2), and ECL3 to be involved in T2R4 binding to its agonist quinine. ECL2 residues Asn-173 and Thr-174 are essential for quinine binding. Guided by a molecular model of T2R4, a number of amino acid derivatives were screened for their ability to bind to T2R4. These predictions were tested by calcium imaging assays that led to identification of γ-aminobutryic acid (GABA) and Nα,Nα-bis(carboxymethyl)-l-lysine (BCML) as competitive inhibitors of quinine-activated T2R4 with an IC50 of 3.2 ± 0.3 μm and 59 ± 18 nm, respectively. Interestingly, pharmacological characterization using a constitutively active mutant of T2R4 reveals that GABA acts as an antagonist, whereas BCML acts as an inverse agonist on T2R4. Site-directed mutagenesis confirms that the two novel bitter blockers share the same orthosteric site as the agonist quinine. The signature residues Ala-90 and Lys-270 play important roles in interacting with BCML and GABA, respectively. This is the first report to characterize a T2R endogenous antagonist and an inverse agonist. The novel bitter blockers will facilitate physiological studies focused on understanding the roles of T2Rs in extraoral tissues.
Bioorganic & Medicinal Chemistry | 2009
Jason Boyd; Yuanzhu Gai; Ken M. Nelson; Erica Lukiwski; James Talbot; Mary K. Loewen; Stacey J. Owen; L. Irina Zaharia; Adrian J. Cutler; Suzanne R. Abrams; Michele C. Loewen
Abscisic acid (ABA) is a carotenoid-derived plant hormone known to regulate critical functions in growth, development and responses to environmental stress. The key enzyme which carries out the first committed step in ABA biosynthesis is the carotenoid cleavage 9-cis-epoxycarotenoid dioxygenase (NCED). We have developed a series of sulfur and nitrogen-containing compounds as potential ABA biosynthesis inhibitors of the NCED, based on modification of the sesquiterpenoid segment of the 9-cis-xanthophyll substrates and product. In in vitro assays, three sesquiterpene-like carotenoid cleavage dioxygenase (SLCCD) inhibitor compounds 13, 17 and 18 were found to act as inhibitors of Arabidopsis thaliana NCED 3 (AtNCED3) with K(i)s of 93, 57 and 87 microM, respectively. Computational docking to a model of AtNCED3 supports a mechanism of inhibition through coordination of the heteroatom with the non-heme iron in the enzyme active site. In pilot studies, pretreatment of osmotically stressed Arabidopsis plants with compound 13 resulted lower levels of ABA and catabolite accumulation compared to levels in mannitol-stressed plant controls. This same inhibitor moderated known ABA-induced gene regulation effects and was only weakly active in inhibition of seed germination. Interestingly, all three inhibitors led to moderation of the stress-induced transcription of AtNCED3 itself, which could further contribute to lowering ABA biosynthesis in planta. Overall, these sesquiterpenoid-like inhibitors present new tools for controlling and investigating ABA biosynthesis and regulation.
Biochemistry | 2015
Sai Prasad Pydi; Appalaraju Jaggupilli; Ken M. Nelson; Suzanne R. Abrams; Rajinder P. Bhullar; Michele C. Loewen; Prashen Chelikani
Bitter taste receptors (T2Rs) belong to the G protein-coupled receptor superfamily. In humans, 25 T2Rs mediate bitter taste sensation. In addition to the oral cavity, T2Rs are expressed in many extraoral tissues, including the central nervous system, respiratory system, and reproductive system. To understand the mechanistic roles of the T2Rs in oral and extraoral tissues, novel blockers or antagonists are urgently needed. Recently, we elucidated the binding pocket of T2R4 for its agonist quinine, and an antagonist and inhibitory neurotransmitter, γ-aminobutyric acid. This structure-function information about T2R4 led us to screen the plant hormone abscisic acid (ABA), its precursor (xanthoxin), and catabolite phaseic acid for their ability to bind and activate or inhibit T2R4. Molecular docking studies followed by functional assays involving calcium imaging confirmed that ABA is an antagonist with an IC50 value of 34.4 ± 1.1 μM. However, ABA precursor xanthoxin acts as an agonist on T2R4. Interestingly, molecular model-guided site-directed mutagenesis suggests that the T2R4 residues involved in quinine binding are also predominantly involved in binding to the novel antagonist, ABA. The antagonist ability of ABA was tested using another T2R4 agonist, yohimbine. Our results suggest that ABA does not inhibit yohimbine-induced T2R4 activity. The discovery of natural bitter blockers has immense nutraceutical and physiological significance and will help in dissecting the T2R molecular pathways in various tissues.
Plant Cell Tissue and Organ Culture | 2011
Olesya A. Kharenko; L. Irina Zaharia; Michael Giblin; Vera Čekić; David C. Taylor; C. Don Palmer; Suzanne R. Abrams; Michele C. Loewen
Lesquerella fendleri (commonly known as “Fendler’s bladderpod” or “yellowtop”) is a member of the Brassicaceae and is an important seed oil-producing plant. The lipid profile of L. fendleri seed indicates potential for producing a high quality replacement for castor oil. In this work, characterization of the lipid content of a suspension cell culture, derived from seedlings of L.fendleri, is provided. Under the described suspension cell culture conditions, 16:0, 18:1Δ9, 18:2 Δ9, Δ12 and 18:3 Δ9, Δ12, Δ15 fatty acids were found to accumulate in the cells, while 16:0, 26:0 and 28:0 fatty acids were predominant in the culture medium. Subsequently, the effect of application of abscisic acid (ABA), which modulates lipid accumulation, was assessed. Exogenously applied ABA was taken up by the cells and metabolized via the conjugation pathway, resulting in the accumulation of ABA-glucose ester. Preliminary tests demonstrate the cell line is responsive to exogenous ABA, resulting in increased cellular lipid content and increased accumulation of lipids in the culture medium. This novel L. fendleri suspension culture presents a valuable model system for efficient characterization of mechanisms associated with ABA-induced accumulation of lipids.
Biochimica et Biophysica Acta | 2009
Chunhua Shi; Matthew F. Paige; Jason Maley; Michele C. Loewen
BACKGROUND The S. cerevisiae alpha-factor receptor, Ste2p, is a G-protein coupled receptor that plays key roles in yeast signaling and mating. Oligomerization of Ste2p has previously been shown to be important for intracellular trafficking, receptor processing and endocytosis. However the role of ligand in receptor oligomerization remains enigmatic. METHODS Using functional recombinant forms of purified Ste2p, atomic force microscopy, dynamic light scattering and chemical crosslinking are applied to investigate the role of ligand in Ste2p oligomerization. RESULTS Atomic force microscopy images indicate a molecular height for recombinant Ste2p in the presence of alpha-factor nearly double that of Ste2p alone. This observation is supported by complementary dynamic light scattering measurements which indicate a ligand-induced increase in the polydispersity of the Ste2p hydrodynamic radius. Finally, chemical cross-linking of HEK293 plasma membranes presenting recombinant Ste2p indicates alpha-factor induced stabilization of the dimeric form and higher order oligomeric forms of the receptor upon SDS-PAGE analysis. CONCLUSIONS alpha-factor induces oligomerization of Ste2p in vitro and in membrane. GENERAL SIGNIFICANCE These results provide additional evidence of a possible role for ligand in mediation of Ste2p oligomerization in vivo.
PLOS Computational Biology | 2013
Lyudmyla Dorosh; Olesya A. Kharenko; Nandhakishore Rajagopalan; Michele C. Loewen; Maria Stepanova
The pyrabactin resistance 1 (PYR1)/PYR1-like (PYL)/regulatory component of abscisic acid (ABA) response (RCAR) proteins comprise a well characterized family of ABA receptors. Recent investigations have revealed two subsets of these receptors that, in the absence of ABA, either form inactive homodimers (PYR1 and PYLs 1–3) or mediate basal inhibition of downstream target type 2C protein phosphatases (PP2Cs; PYLs 4–10) respectively in vitro. Addition of ABA has been shown to release the apo-homodimers yielding ABA-bound monomeric holo-receptors that can interact with PP2Cs; highlighting a competitive-interaction process. Interaction selectivity has been shown to be mediated by subtle structural variations of primary sequence and ligand binding effects. Now, the dynamical contributions of ligand binding on interaction selectivity are investigated through extensive molecular dynamics (MD) simulations of apo and holo-PYR1 in monomeric and dimeric form as well as in complex with a PP2C, homology to ABA insensitive 1 (HAB1). Robust comparative interpretations were enabled by a novel essential collective dynamics approach. In agreement with recent experimental findings, our analysis indicates that ABA-bound PYR1 should efficiently bind to HAB1. However, both ABA-bound and ABA-extracted PYR1-HAB1 constructs have demonstrated notable similarities in their dynamics, suggesting that apo-PYR1 should also be able to make a substantial interaction with PP2Cs, albeit likely with slower complex formation kinetics. Further analysis indicates that both ABA-bound and ABA-free PYR1 in complex with HAB1 exhibit a higher intra-molecular structural stability and stronger inter-molecular dynamic correlations, in comparison with either holo- or apo-PYR1 dimers, supporting a model that includes apo-PYR1 in complex with HAB1. This possibility of a conditional functional apo-PYR1-PP2C complex was validated in vitro. These findings are generally consistent with the competitive-interaction model for PYR1 but highlight dynamical contributions of the PYR1 structure in mediating interaction selectivity suggesting added degrees of complexity in the regulation of the competitive-inhibition.
Journal of Biochemistry | 2013
Olesya A. Kharenko; Devin R. Polichuk; Ken M. Nelson; Suzanne R. Abrams; Michele C. Loewen
Abscisic acid (ABA) is a stress-inducible plant hormone comprising an inevitable component of the human diet. Recently, stress-induced accumulation of autocrine ABA was shown in humans, as well as ABA-mediated modulation of a number of disease-associated systems. Now, the application of a chemical proteomics approach to gain further insight into ABA mechanisms of action in mammalian cells is reported. An ABA mimetic photoaffinity probe was applied to intact mammalian insulinoma and embryonic cells, leading to the identification of heat shock protein 70 (HSP70) family members, (including GRP78 and HSP70-2) as putative human ABA-binding proteins. In vitro characterization of the ABA-HSP70 interactions yielded K(d)s in the 20-60 µM range, which decreased several fold in the presence of co-chaperone. However, ABA was found to have only variable- and co-chaperone-independent effects on the ATPase activity of these proteins. The potential implications of these ABA-HSP70 interactions are discussed with respect to the intracellular protein folding and extracellular receptor-like activities of these stress-inducible proteins. While mechanistic and functional relevance remain enigmatic, we conclude that ABA can bind to human HSP70 family members with physiologically relevant affinities and in a co-chaperone-dependent manner.
PLOS ONE | 2016
Cameron S. Gordon; Nandhakishore Rajagopalan; Eddy P. Risseeuw; Marci Surpin; Fraser J. Ball; Carla J. S. Barber; Leann M. Buhrow; Shawn M. Clark; Jonathan E. Page; Christopher D. Todd; Suzanne R. Abrams; Michele C. Loewen
Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA’s modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops.