Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Cargill is active.

Publication


Featured researches published by Michele Cargill.


PLOS Biology | 2005

A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees

Rasmus Nielsen; Carlos Bustamante; Andrew G. Clark; Stephen Glanowski; Timothy B. Sackton; Melissa J. Hubisz; Adi Fledel-Alon; David M. Tanenbaum; Daniel Civello; Thomas J. White; John J. Sninsky; Mark D. Adams; Michele Cargill

Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved in sensory perception or immune defenses. However, the group of genes that show the strongest evidence for positive selection also includes a surprising number of genes involved in tumor suppression and apoptosis, and of genes involved in spermatogenesis. We hypothesize that positive selection in some of these genes may be driven by genomic conflict due to apoptosis during spermatogenesis. Genes with maximal expression in the brain show little or no evidence for positive selection, while genes with maximal expression in the testis tend to be enriched with positively selected genes. Genes on the X chromosome also tend to show an elevated tendency for positive selection. We also present polymorphism data from 20 Caucasian Americans and 19 African Americans for the 50 annotated genes showing the strongest evidence for positive selection. The polymorphism analysis further supports the presence of positive selection in these genes by showing an excess of high-frequency derived nonsynonymous mutations.


Nature | 2005

Natural selection on protein-coding genes in the human genome

Carlos Bustamante; Adi Fledel-Alon; Scott Williamson; Rasmus Nielsen; Melissa Todd Hubisz; Stephen Glanowski; David M. Tanenbaum; Thomas J. White; John J. Sninsky; Ryan D. Hernandez; Daniel Civello; Mark D. Adams; Michele Cargill; Andrew G. Clark

Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection. The extent to which weak negative and positive darwinian selection have driven the molecular evolution of different species varies greatly, with some species, such as Drosophila melanogaster, showing strong evidence of pervasive positive selection, and others, such as the selfing weed Arabidopsis thaliana, showing an excess of deleterious variation within local populations. Here we contrast patterns of coding sequence polymorphism identified by direct sequencing of 39 humans for over 11,000 genes to divergence between humans and chimpanzees, and find strong evidence that natural selection has shaped the recent molecular evolution of our species. Our analysis discovered 304 (9.0%) out of 3,377 potentially informative loci showing evidence of rapid amino acid evolution. Furthermore, 813 (13.5%) out of 6,033 potentially informative loci show a paucity of amino acid differences between humans and chimpanzees, indicating weak negative selection and/or balancing selection operating on mutations at these loci. We find that the distribution of negatively and positively selected genes varies greatly among biological processes and molecular functions, and that some classes, such as transcription factors, show an excess of rapidly evolving genes, whereas others, such as cytoskeletal proteins, show an excess of genes with extensive amino acid polymorphism within humans and yet little amino acid divergence between humans and chimpanzees.


PLOS Biology | 2010

A Simple Genetic Architecture Underlies Morphological Variation in Dogs

Adam R. Boyko; Pascale Quignon; Lin Li; Jeffrey J. Schoenebeck; Jeremiah D. Degenhardt; Kirk E. Lohmueller; Keyan Zhao; Abra Brisbin; Heidi G. Parker; Bridgett M. vonHoldt; Michele Cargill; Adam Auton; Andrew R. Reynolds; Abdel G. Elkahloun; Marta Castelhano; Dana S. Mosher; Nathan B. Sutter; Gary S. Johnson; John Novembre; Melissa J. Hubisz; Adam Siepel; Robert K. Wayne; Carlos Bustamante; Elaine A. Ostrander

The largest genetic study to date of morphology in domestic dogs identifies genes controlling nearly 100 morphological traits and identifies important trends in phenotypic variation within this species.


Science | 2009

An Expressed Fgf4 Retrogene Is Associated with Breed-Defining Chondrodysplasia in Domestic Dogs

Heidi G. Parker; Bridgett M. vonHoldt; Pascale Quignon; Elliott H. Margulies; Stephanie Shao; Dana S. Mosher; Tyrone C. Spady; Abdel G. Elkahloun; Michele Cargill; Paul Glyn Jones; Cheryl L. Maslen; Gregory M. Acland; Nathan B. Sutter; Keiichi Kuroki; Carlos Bustamante; Robert K. Wayne; Elaine A. Ostrander

Going Retro In a year celebrating Darwin, the question of how new functional genes arise during evolution is of particular interest. Through a multibreed genetic analysis of the domestic dog, Parker et al. (p. 995, published online 16 July; see the Perspective by Kaessmann) find that the short-legged phenotype that characterizes at least 19 common dog breeds, including the corgi, dachshund, and basset hound, is specifically associated with the expression in developing bone of a gene encoding fibroblast growth factor 4 (fgf4), a member of a gene family previously implicated in dwarfism in humans. Interestingly, the culprit fgf4 gene in dogs has the hallmarks of a “retrogene,” a gene that arises when a parental gene is duplicated through an RNA-based copying mechanism. The short legs that characterize certain dog breeds are associated with a gene that arose recently by RNA-based gene duplication. Retrotransposition of processed mRNAs is a common source of novel sequence acquired during the evolution of genomes. Although the vast majority of retroposed gene copies, or retrogenes, rapidly accumulate debilitating mutations that disrupt the reading frame, a small percentage become new genes that encode functional proteins. By using a multibreed association analysis in the domestic dog, we demonstrate that expression of a recently acquired retrogene encoding fibroblast growth factor 4 (fgf4) is strongly associated with chondrodysplasia, a short-legged phenotype that defines at least 19 dog breeds including dachshund, corgi, and basset hound. These results illustrate the important role of a single evolutionary event in constraining and directing phenotypic diversity in the domestic dog.


Genetics in Medicine | 2009

The Scientific Foundation for Personal Genomics: Recommendations from a National Institutes of Health–Centers for Disease Control and Prevention Multidisciplinary Workshop

Muin J. Khoury; Colleen M. McBride; Sheri D. Schully; John P. A. Ioannidis; W. Gregory Feero; A. Cecile J. W. Janssens; Marta Gwinn; Denise G. Simons-Morton; Jay M. Bernhardt; Michele Cargill; Stephen J. Chanock; George M. Church; Ralph J. Coates; Francis S. Collins; Robert T. Croyle; Barry R. Davis; Gregory J. Downing; Amy Duross; Susan Friedman; Mitchell H. Gail; Geoffrey S. Ginsburg; Robert C. Green; Mark H. Greene; Philip Greenland; Jeffrey R. Gulcher; Andro Hsu; Kathy Hudson; Sharon L.R. Kardia; Paul L. Kimmel; Michael S. Lauer

The increasing availability of personal genomic tests has led to discussions about the validity and utility of such tests and the balance of benefits and harms. A multidisciplinary workshop was convened by the National Institutes of Health and the Centers for Disease Control and Prevention to review the scientific foundation for using personal genomics in risk assessment and disease prevention and to develop recommendations for targeted research. The clinical validity and utility of personal genomics is a moving target with rapidly developing discoveries but little translation research to close the gap between discoveries and health impact. Workshop participants made recommendations in five domains: (1) developing and applying scientific standards for assessing personal genomic tests; (2) developing and applying a multidisciplinary research agenda, including observational studies and clinical trials to fill knowledge gaps in clinical validity and utility; (3) enhancing credible knowledge synthesis and information dissemination to clinicians and consumers; (4) linking scientific findings to evidence-based recommendations for use of personal genomics; and (5) assessing how the concept of personal utility can affect health benefits, costs, and risks by developing appropriate metrics for evaluation. To fulfill the promise of personal genomics, a rigorous multidisciplinary research agenda is needed.


Genome Research | 2009

Darwinian and demographic forces affecting human protein coding genes

Rasmus Nielsen; Melissa J. Hubisz; Ines Hellmann; Dara G. Torgerson; Aida M. Andrés; Anders Albrechtsen; Ryan N. Gutenkunst; Mark D. Adams; Michele Cargill; Adam R. Boyko; Amit Indap; Carlos Bustamante; Andrew G. Clark

Past demographic changes can produce distortions in patterns of genetic variation that can mimic the appearance of natural selection unless the demographic effects are explicitly removed. Here we fit a detailed model of human demography that incorporates divergence, migration, admixture, and changes in population size to directly sequenced data from 13,400 protein coding genes from 20 European-American and 19 African-American individuals. Based on this demographic model, we use several new and established statistical methods for identifying genes with extreme patterns of polymorphism likely to be caused by Darwinian selection, providing the first genome-wide analysis of allele frequency distributions in humans based on directly sequenced data. The tests are based on observations of excesses of high frequency-derived alleles, excesses of low frequency-derived alleles, and excesses of differences in allele frequencies between populations. We detect numerous new genes with strong evidence of selection, including a number of genes related to psychiatric and other diseases. We also show that microRNA controlled genes evolve under extremely high constraints and are more likely to undergo negative selection than other genes. Furthermore, we show that genes involved in muscle development have been subject to positive selection during recent human history. In accordance with previous studies, we find evidence for negative selection against mutations in genes associated with Mendelian disease and positive selection acting on genes associated with several complex diseases.


Genetics in Medicine | 2010

Consumer perceptions of direct-to-consumer personalized genomic risk assessments

Cinnamon S. Bloss; Laura Ornowski; Elana Silver; Michele Cargill; Vance Vanier; Nicholas J. Schork; Eric J. Topol

Purpose: To evaluate consumer perceptions of direct-to-consumer personalized genomic risk assessments and assess the extent to which consumer characteristics may be associated with attitudes toward testing.Methods: Adult participants aged 18–85 years of age purchased a personalized genomic risk test at a subsidized rate and were administered a web-based health assessment that included questions regarding perceptions and attitudes toward undergoing testing.Results: Assessments were obtained for 3640 individual study participants, and 49.7% expressed overall concerns about undergoing testing. Logistic regression analysis revealed that women were more likely to express concerns (odds ratio [OR] = 1.20, 95% confidence interval [CI]: 1.04 –1.39), as were individuals employed by a health care organization (OR = 1.23, 95% CI: 1.04 –1.46). Further, younger age (OR = 0.97, 95% CI: 0.96–0.98), higher education (OR = 1.09, 95% CI: 1.04 –1.14), and higher trait anxiety (OR = 1.28, 95% CI: 1.20–1.37) were also significantly associated with expressing concerns related to testing. Attitudes regarding disclosure of genetic risk for a nonpreventable disease were also assessed. None of the individuals in our sample indicated that they would definitely not want to know their risk, and a total of 82.4% indicated that they would want to know.Conclusion: Among individuals who undergo direct-to-consumer genetic testing, approximately half still express concerns about the process/experience. Further, given that concerns vary among different subgroups of consumers, if the clinical validity and utility of these tests are demonstrated, tailored genetic education and counseling services may be of benefit.


PLOS Genetics | 2009

Evolutionary processes acting on candidate cis-regulatory regions in humans inferred from patterns of polymorphism and divergence.

Dara G. Torgerson; Adam R. Boyko; Ryan D. Hernandez; Amit Indap; Xiaolan Hu; Thomas J. White; John J. Sninsky; Michele Cargill; Mark D. Adams; Carlos Bustamante; Andrew G. Clark

Analysis of polymorphism and divergence in the non-coding portion of the human genome yields crucial information about factors driving the evolution of gene regulation. Candidate cis-regulatory regions spanning more than 15,000 genes in 15 African Americans and 20 European Americans were re-sequenced and aligned to the chimpanzee genome in order to identify potentially functional polymorphism and to characterize and quantify departures from neutral evolution. Distortions of the site frequency spectra suggest a general pattern of selective constraint on conserved non-coding sites in the flanking regions of genes (CNCs). Moreover, there is an excess of fixed differences that cannot be explained by a Gamma model of deleterious fitness effects, suggesting the presence of positive selection on CNCs. Extensions of the McDonald-Kreitman test identified candidate cis-regulatory regions with high probabilities of positive and negative selection near many known human genes, the biological characteristics of which exhibit genome-wide trends that differ from patterns observed in protein-coding regions. Notably, there is a higher probability of positive selection in candidate cis-regulatory regions near genes expressed in the fetal brain, suggesting that a larger portion of adaptive regulatory changes has occurred in genes expressed during brain development. Overall we find that natural selection has played an important role in the evolution of candidate cis-regulatory regions throughout hominid evolution.


Arthritis & Rheumatism | 2009

Identification of a novel susceptibility locus for juvenile idiopathic arthritis by genome-wide association analysis

Anne Hinks; Anne Barton; Neil Shephard; Steve Eyre; John Bowes; Michele Cargill; Eric T. Wang; Xiayi Ke; Giulia C. Kennedy; Sally John; Jane Worthington; Wendy Thomson

Objective Juvenile idiopathic arthritis (JIA) is a chronic rheumatic disease of childhood. Two well-established genetic factors known to contribute to JIA susceptibility, HLA and PTPN22, account for less than half of the genetic susceptibility to disease; therefore, additional genetic factors have yet to be identified. The purpose of this study was to perform a systematic search of the genome to identify novel susceptibility loci for JIA. Methods A genome-wide association study using Affymetrix GeneChip 100K arrays was performed in a discovery cohort (279 cases and 184 controls). Single-nucleotide polymorphisms (SNPs) showing the most significant differences between cases and controls were then genotyped in a validation sample of cases (n = 321) and controls, combined with control data from the 1958 UK birth cohort (n = 2,024). In one region in which association was confirmed, fine-mapping was performed (654 cases and 1,847 controls). Results Of the 112 SNPs that were significantly associated with JIA in the discovery cohort, 6 SNPs were associated with JIA in the independent validation cohort. The most strongly associated SNP mapped to the HLA region, while the second strongest association was with a SNP within the VTCN1 gene. Fine-mapping of that gene was performed, and 10 SNPs were found to be associated with JIA. Conclusion This study is the first to successfully apply a SNP-based genome-wide association approach to the investigation of JIA. The replicated association with markers in the VTCN1 gene defined an additional susceptibility locus for JIA and implicates a novel pathway in the pathogenesis of this chronic disease of childhood.


Genes and Immunity | 2008

Variants in the 5q31 cytokine gene cluster are associated with psoriasis

Monica Chang; Yonghong Li; C Yan; Kristina Callis-Duffin; Nori Matsunami; Veronica Garcia; Michele Cargill; Daniel Civello; Nam Bui; Joseph J. Catanese; M. Leppert; Gerald G. Krueger; Ann B. Begovich; Steven J. Schrodi

A multitiered genetic association study of 25 215 single-nucleotide polymorphisms (SNPs) in three case–control sample sets (1446 patients and 1432 controls) identified three IL13-linked SNPs (rs1800925, rs20541 and rs848) associated with psoriasis. Although the susceptibility effects at these SNPs were modest (joint allelic odds ratios (ORs): 0.76 to 0.78; Pcomb: 1.3E−03 to 2.50E−04), the association patterns were consistent across the sample sets, with the minor alleles being protective. Haplotype analyses identified one common, susceptible haplotype CCG (joint allelic OR=1.27; Pcomb=1.88E−04) and a less common, protective haplotype TTT (joint allelic OR=0.74; Pcomb=7.05E−04). In combination with the other known genetic risk factors, HLA-C, IL12B and IL23R, the variants reported here generate an 11-fold psoriasis-risk differential. Residing in the 5q31 cytokine gene cluster, IL13 encodes an important T-cell-derived cytokine that regulates cell-mediated immunity. These results provide the foundation for additional studies required to fully dissect the associations within this cytokine-rich genomic region, as polymorphisms in closely linked candidate genes, such as IRF1, IL5 or IL4, may be driving these results through linkage disequilibrium.

Collaboration


Dive into the Michele Cargill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Adams

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge