Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Cini is active.

Publication


Featured researches published by Michele Cini.


Archive | 2012

Grand Canonical Ensemble

Michele Cini; Francesco Fucito; Mauro Sbragaglia

A gas is in contact with a surface. On the surface we find N 0 localized and distinguishable sites adsorbing N (N≤N 0) molecules of the gas (each site can adsorb zero or one molecule of the gas). Find the grand canonical partition function of the system, and determine the chemical potential as a function of the average number of particles 〈N〉 which are adsorbed by the surface. You can think that the canonical partition function of an adsorbed molecule is a function only of the temperature, Q(T), and that all the adsorbed molecules are non interacting.


Archive | 2018

Systems of Particles

Michele Cini

We need to extend the quantum mechanical theory to the case of N particles; separately, the particles would be described by a Schrodinger equation or the Pauli equation, depending on their spins. As in the classical case, the Hamiltonian of the system will be the sum of those of the particles plus an interaction term (possibly). For independent particles (no interaction), the Hamiltonian is, in obvious notation


Archive | 2018

Dirac’s Delta

Michele Cini


Archive | 2018

Quantum Statistical Mechanics

Michele Cini

\hat{H}(1,2,\ldots , N)= \sum _{n}^N \hat{h}(n),


Archive | 2018

The Wave Function

Michele Cini


Archive | 2012

Thermodynamics and Microcanonical Ensemble

Michele Cini; Francesco Fucito; Mauro Sbragaglia

where h(n) describes particle n. The wave function \(\varPsi (1,2,\ldots , N)\) depends on all the orbital and spin degrees of freedom of the particles, so it is a spinor in the spin space of each particle.


Archive | 2012

Formalism of Quantum Mechanics and One Dimensional Problems

Michele Cini; Francesco Fucito; Mauro Sbragaglia

Let us start with the Heavyside (Oliver Heaviside (1850–1925) was probably the first to use the \(\delta \) before Dirac, and the work of George Green also implies the concept. Often the names are not historically fair) \(\theta \) discontinuous function, also known as the step function, defined by


Archive | 2012

Central Force Field

Michele Cini; Francesco Fucito; Mauro Sbragaglia


Archive | 2012

Summary of Quantum and Statistical Mechanics

Michele Cini; Francesco Fucito; Mauro Sbragaglia

\begin{aligned} \theta (x) = \left\{ \begin{array}{ll} 1 &{} \text {se } x>0, \\ {1 \over 2} &{} \text {if } x=0, \\ 0 &{} \text {se } x<0, \end{array} \right. \end{aligned}


Archive | 2012

Angular Momentum and Spin

Michele Cini; Francesco Fucito; Mauro Sbragaglia

Collaboration


Dive into the Michele Cini's collaboration.

Top Co-Authors

Avatar

Francesco Fucito

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Mauro Sbragaglia

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge