Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Dionne is active.

Publication


Featured researches published by Michele Dionne.


Wetlands Ecology and Management | 1996

Ecological responses to tidal restorations of two northern New England salt marshes

David M. Burdick; Michele Dionne; Roelof M. J. Boumans; Frederick T. Short

Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.


PLOS ONE | 2013

Experimental and Natural Warming Elevates Mercury Concentrations in Estuarine Fish

Jennifer A. Dijkstra; Kate L. Buckman; Darren M. Ward; David W. Evans; Michele Dionne; Celia Y. Chen

Marine food webs are the most important link between the global contaminant, methylmercury (MeHg), and human exposure through consumption of seafood. Warming temperatures may increase human exposure to MeHg, a potent neurotoxin, by increasing MeHg production as well as bioaccumulation and trophic transfer through marine food webs. Studies of the effects of temperature on MeHg bioaccumulation are rare and no study has specifically related temperature to MeHg fate by linking laboratory experiments with natural field manipulations in coastal ecosystems. We performed laboratory and field experiments on MeHg accumulation under varying temperature regimes using the killifish, Fundulus heteroclitus. Temperature treatments were established in salt pools on a coastal salt marsh using a natural temperature gradient where killifish fed on natural food sources. Temperatures were manipulated across a wider range in laboratory experiments with killifish exposed to MeHg enriched food. In both laboratory microcosms and field mesocosms, MeHg concentrations in killifish significantly increased at elevated temperatures. Moreover, in field experiments, other ancillary variables (salinity, MeHg in sediment, etc.) did not relate to MeHg bioaccumulation. Modeling of laboratory experimental results suggested increases in metabolic rate as a driving factor. The elevated temperatures we tested are consistent with predicted trends in climate warming, and indicate that in the absence of confounding factors, warmer sea surface temperatures could result in greater in bioaccumulation of MeHg in fish, and consequently, increased human exposure.


Estuaries and Coasts | 2013

Ditching and Ditch-Plugging in New England Salt Marshes: Effects on Hydrology, Elevation, and Soil Characteristics

Robert E. Vincent; David M. Burdick; Michele Dionne

Anthropogenic activities in New England salt marshes have altered hydrologic flows in various ways, but unintended consequences from some types of habitat modifications have received little attention. Specifically, ditches have existed on salt marshes for decades, but the effects of these hydrologic alterations are only poorly understood. Ditch-plugging is a more recent methodology used for salt marsh habitat enhancement and mosquito control, but the long-term effects from this management practice are also unclear. The interactions involving marsh surface elevation, soil characteristics, and hydrologic regimes result in feedbacks that regulate the salt marsh self-maintenance process, and these interactions vary with hydrologic modification. Using natural tidal creeks and pools as controls, we examined the effects of ditching and plugging, respectively, on hydrology, surface elevations, and soils. Results showed the most apparent effects of altered hydrology from ditching are prolonged pore-water retention in the rooting zone and significantly lower soil bulk density and mineral content when compared with natural creek habitat. From a management perspective, the important question is whether the combined alterations to physical and biological processes will hinder the marsh’s ability to keep pace with increasing rates of sea level rise, especially in more heavily ditched marshes. In contrast, ditch-plugging results in the decoupling of feedback processes that promote salt marsh self-maintenance and in doing so, threatens marsh stability and resilience to climate change. High surface water levels, permanently saturated soils, marsh subsidence, and significantly lower bulk density, carbon storage, soil strength, and redox levels associated with hydrologic alterations from ditch-plugging all support this conclusion.


Wetlands | 2009

Relationships among upland development, nitrogen, and plant community composition in a Maine salt marsh.

Rosemarie Fitch; Theresa A. Theodose; Michele Dionne

Salt marshes provide important ecosystem services, such as buffering the nutrient runoff from land to sea, and as nurseries for economically important fish species. Upland development in southern New England salt marshes has led to drastic increases in nitrogen runoff and associated changes in marsh diversity asSpartina alterniflora displaces high marsh species. How upland development impacts nitrogen levels and community parameters on northern New England salt marshes is not known. We assessed if upland development was associated with increased nitrogen and changes in plant community composition in a northern New England salt marsh. We found nitrate levels were higher in areas adjacent to development relative to those associated with intact upland, but that marsh nitrogen levels were generally much lower than those reported from southern New England. Areas associated with development had highTriglochin maritimum abundance but lowS. alterniflora abundance relative to areas with no upland development. Correlations between nitrate and plant abundance corroborated these patterns. Our work suggests that in northern New England salt marshes,T. maritimum, rather thanS. alterniflora, may be an early indicator of nitrogen runoff from upland development.


Estuaries and Coasts | 2012

Salt Marsh Fucoid Algae: Overlooked Ecosystem Engineers of North Temperate Salt Marshes

Megan C. Tyrrell; Michele Dionne; Sarah A. Eberhardt

Salt marsh fucoid algae are a conspicuous component of north temperate marshes, yet comparatively little research has been conducted to examine their ecological effects. We examined the influence of salt marsh fucoids on physical conditions and the biotic community in a manipulative experiment conducted in a southern Maine back-barrier salt marsh. The biomass of salt marsh fucoids was higher than that of aboveground Spartina alterniflora in the zone where we conducted the experiment. Average daytime temperatures at the sediment surface were significantly reduced by the presence of salt marsh fucoids. Density and biomass of standing-dead S. alterniflora was significantly higher when salt marsh fucoids were removed. In contrast, the abundance of various species of epifauna and infauna were significantly enhanced by the presence of salt marsh fucoids. A regional survey indicated that results from the study site may be conservative because the biomass of salt marsh fucoids was lowest among other back-barrier marshes. Salt marsh fucoids are little studied ecosystem engineers whose presence affects the microclimate and biotic community, especially the animals that constitute the basal components of the salt marsh trophic relay.


Estuaries and Coasts | 2015

Community Structure and Abundance of Benthic Infaunal Invertebrates in Maine Fringing Marsh Ecosystems

Richard A. MacKenzie; Michele Dionne; Jeremy Miller; Michael Haas; Pamela A. Morgan

Fringing marshes are abundant ecosystems that dominate the New England coastline. Despite their abundance, very little baseline data is available from them and few studies have documented the ecosystems services that they provide. This information is important for conservation efforts as well as for an increased understanding of how fringing marshes function compared to larger marsh meadow systems. Benthic infaunal invertebrates were sampled from cores collected from Spartina alterniflora-dominated low marsh, Spartina patens-dominated high marsh, and Phragmites australis-invaded high marsh zones of nine fringing marsh ecosystems in Casco Bay, Maine, USA. Infaunal densities and biomass were generally higher in low marsh than high marsh or P. australis cores. Invertebrate community structure was significantly different between low marsh and high marsh and P. australis cores, which was attributed to significantly higher pore water salinity, lower organic matter, total plant percent cover, and S. patens cover in low marsh zones. There were no differences in invertebrate densities, biomass, or community structure when high marsh and P. australis cores were compared. Invertebrate densities and community structure were dominated by oligochaetes in all zones. Oligochaetes were also an important component of infaunal biomass, but the less abundant and larger invertebrates such as green crabs, tanaids, and bivalves were also large contributors to biomass in the low marsh zone. Low marsh invertebrate communities were characterized by significantly higher densities of nematodes, Nereis virens, an unidentified oligochaete, the bivalves Gemma gemma and Mya arenaria, and Leptochelia rapax. High marsh invertebrate communities were characterized by higher densities of insects, specifically Culicoides sp. ceratopogonid larvae and Anurida maritima, as well as an unidentified species of mite. Our results revealed a diverse and abundant infaunal invertebrate community that likely supports similar ecosystem services in fringing marshes as invertebrates in larger marsh meadows.


Estuaries and Coasts | 2015

Rethinking the Freshwater Eel: Salt Marsh Trophic Support of the American Eel, Anguilla rostrata

Alyson L. Eberhardt; David M. Burdick; Michele Dionne; Robert E. Vincent

Despite the fact that Anguilla rostrata (American eel) are frequently captured in salt marshes, their role in salt marsh food webs and the influence of human impacts, such as tidal restrictions, on this role remains unclear. To better understand salt marsh trophic support of A. rostrata, eels were collected from tidally restricted and unrestricted salt marsh creeks within three New England estuaries. Gut contents were examined, and eel muscle tissue was analyzed for carbon and nitrogen stable isotope values and entered into MixSir mixing models to understand if salt marsh food sources are important contributors to eel diet. Data suggest that eel prey rely heavily on salt marsh organic matter and eels utilize salt marsh secondary production as an energetic resource over time, and thus can be considered salt marsh residents. Gut contents indicate that A. rostrata function as top predators, feeding primarily on secondary consumers including other fish species, crustaceans, and polychaetes. Higher A. rostrata trophic position measured upstream of reference creeks suggests that severe tidal restrictions may result in altered food webs, but it is not clear how this impacts the overall fitness of A. rostrata populations in New England salt marshes.


Restoration Ecology | 2002

A Monitoring Protocol to Assess Tidal Restoration of Salt Marshes on Local and Regional Scales

Hilary A. Neckles; Michele Dionne; David M. Burdick; Charles T. Roman; Robert N. Buchsbaum; Eric Hutchins


Environmental Science & Technology | 2009

Mercury Bioavailability and Bioaccumulation in Estuarine Food Webs in the Gulf of Maine

Celia Y. Chen; Michele Dionne; Brandon Mayes; Darren M. Ward; Stefan Stürup; Brian P. Jackson


Restoration Ecology | 2006

A regional assessment of salt marsh restoration and monitoring in the Gulf of Maine

Raymond A. Konisky; David M. Burdick; Michele Dionne; Hilary A. Neckles

Collaboration


Dive into the Michele Dionne's collaboration.

Top Co-Authors

Avatar

David M. Burdick

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Richard A. MacKenzie

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Jeremy Miller

Wells National Estuarine Research Reserve

View shared research outputs
Top Co-Authors

Avatar

Robert E. Vincent

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Theresa A. Theodose

University of Southern Maine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge