Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele E. Auldridge is active.

Publication


Featured researches published by Michele E. Auldridge.


Current Biology | 2004

MAX3/CCD7 Is a Carotenoid Cleavage Dioxygenase Required for the Synthesis of a Novel Plant Signaling Molecule

Jonathan Booker; Michele E. Auldridge; Sarah Wills; Donald R. McCarty; Harry J. Klee; Ottoline Leyser

BACKGROUND Plant development is exquisitely environmentally sensitive, with plant hormones acting as long-range signals that integrate developmental, genetic, and environmental inputs to regulate development. A good example of this is in the control of shoot branching, where wide variation in plant form can be generated in a single genotype in response to environmental and developmental cues. RESULTS Here we present evidence for a novel plant signaling molecule involved in the regulation of shoot branching. We show that the MAX3 gene of Arabidopsis is required for the production of a graft-transmissible, highly active branch inhibitor that is distinct from any of the previously characterized branch-inhibiting hormones. Consistent with its proposed function in the synthesis of a novel signaling molecule, we show that MAX3 encodes a plastidic dioxygenase that can cleave multiple carotenoids. CONCLUSIONS We conclude that MAX3 is required for the synthesis of a novel carotenoid-derived long-range signal that regulates shoot branching.


Plant Physiology | 2004

Circadian Regulation of the PhCCD1 Carotenoid Cleavage Dioxygenase Controls Emission of β-Ionone, a Fragrance Volatile of Petunia Flowers

Andrew J. Simkin; Beverly A. Underwood; Michele E. Auldridge; Holly M. Loucas; Kenichi Shibuya; Eric A. Schmelz; David G. Clark; Harry J. Klee

Carotenoids are thought to be the precursors of terpenoid volatile compounds that contribute to flavor and aroma. One such volatile, β-ionone, is important to fragrance in many flowers, including petunia (Petunia hybrida). However, little is known about the factors regulating its synthesis in vivo. The petunia genome contains a gene encoding a 9,10(9′,10′) carotenoid cleavage dioxygenase, PhCCD1. The PhCCD1 is 94% identical to LeCCD1A, an enzyme responsible for formation of β-ionone in tomato (Lycopersicon esculentum; Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ [2004] Plant J [in press]). Reduction of PhCCD1 transcript levels in transgenic plants led to a 58% to 76% decrease in β-ionone synthesis in the corollas of selected petunia lines, indicating a significant role for this enzyme in volatile synthesis. Quantitative reverse transcription-PCR analysis revealed that PhCCD1 is highly expressed in corollas and leaves, where it constitutes approximately 0.04% and 0.02% of total RNA, respectively. PhCCD1 is light-inducible and exhibits a circadian rhythm in both leaves and flowers. β-Ionone emission by flowers occurred principally during daylight hours, paralleling PhCCD1 expression in corollas. The results indicate that PhCCD1 activity and β-ionone emission are likely regulated at the level of transcript.


Critical Reviews in Biochemistry and Molecular Biology | 2011

Bacterial phytochromes: More than meets the light

Michele E. Auldridge; Katrina T. Forest

Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.


Journal of Biological Chemistry | 2012

Structure-guided Engineering Enhances a Phytochrome-based Infrared Fluorescent Protein

Michele E. Auldridge; Kenneth A. Satyshur; David M. Anstrom; Katrina T. Forest

Background: Engineered variants of the phytochrome photoreceptor are infrared fluorescent proteins. Results: Based on crystal structures, side chain substitutions near the chromophore were combined with monomerization of truncated phytochrome to yield an enhanced fluorophore. Conclusion: Amino acid changes that increase fluorescence discourage photoproduct formation. Significance: This improved infrared phytofluor provides long-wavelength excitation for high signal to noise in tissue and whole animals. Phytochrome is a multidomain dimeric red light photoreceptor that utilizes a chromophore-binding domain (CBD), a PHY domain, and an output module to induce cellular changes in response to light. A promising biotechnology tool emerged when a structure-based substitution at Asp-207 was shown to be an infrared fluorophore that uses a biologically available tetrapyrrole chromophore. We report multiple crystal structures of this D207H variant of the Deinococcus radiodurans CBD, in which His-207 is observed to form a hydrogen bond with either the tetrapyrrole A-ring oxygen or the Tyr-263 hydroxyl. Based on the implications of this duality for fluorescence properties, Y263F was introduced and shown to have stronger fluorescence than the original D207H template. Our structures are consistent with the model that the Y263F change prevents a red light-induced far-red light absorbing phytochrome chromophore configuration. With the goal of decreasing size and thereby facilitating use as a fluorescent tag in vivo, we also engineered a monomeric form of the CBD. Unexpectedly, photoconversion was observed in the monomer despite the lack of a PHY domain. This observation underscores an interplay between dimerization and the photochemical properties of phytochrome and suggests that the monomeric CBD could be used for further studies of the photocycle. The D207H substitution on its own in the monomer did not result in fluorescence, whereas Y263F did. Combined, the D207H and Y263F substitutions in the monomeric CBD lead to the brightest of our variants, designated Wisconsin infrared phytofluor (Wi-Phy).


Plant Physiology | 2010

Enzymatic Functions of Wild Tomato Methylketone Synthases 1 and 2

Geng Yu; Thuong T.H. Nguyen; Yongxia Guo; Ines Schauvinhold; Michele E. Auldridge; Nazmul H. Bhuiyan; Imri Ben-Israel; Yoko Iijima; Eyal Fridman; Joseph P. Noel; Eran Pichersky

The trichomes of the wild tomato species Solanum habrochaites subsp. glabratum synthesize and store high levels of methylketones, primarily 2-tridecanone and 2-undecanone, that protect the plants against various herbivorous insects. Previously, we identified cDNAs encoding two proteins necessary for methylketone biosynthesis, designated methylketone synthase 1 (ShMKS1) and ShMKS2. Here, we report the isolation of genomic sequences encoding ShMKS1 and ShMKS2 as well as the homologous genes from the cultivated tomato, Solanum lycopersicum. We show that a full-length transcript of ShMKS2 encodes a protein that is localized in the plastids. By expressing ShMKS1 and ShMKS2 in Escherichia coli and analyzing the products formed, as well as by performing in vitro assays with both ShMKS1and ShMKS2, we conclude that ShMKS2 acts as a thioesterase hydrolyzing 3-ketoacyl-acyl carrier proteins (plastid-localized intermediates of fatty acid biosynthesis) to release 3-ketoacids and that ShMKS1 subsequently catalyzes the decarboxylation of these liberated 3-ketoacids, forming the methylketone products. Genes encoding proteins with high similarity to ShMKS2, a member of the “hot-dog fold” protein family that is known to include other thioesterases in nonplant organisms, are present in plant species outside the genus Solanum. We show that a related enzyme from Arabidopsis (Arabidopsis thaliana) also produces 3-ketoacids when recombinantly expressed in E. coli. Thus, the thioesterase activity of proteins in this family appears to be ancient. In contrast, the 3-ketoacid decarboxylase activity of ShMKS1, which belongs to the α/β-hydrolase fold superfamily, appears to have emerged more recently, possibly within the genus Solanum.


Plant Physiology | 2009

Multiple Biochemical and Morphological Factors Underlie the Production of Methylketones in Tomato Trichomes

Imri Ben-Israel; Geng Yu; Michael B. Austin; Nazmul H. Bhuiyan; Michele E. Auldridge; Thuong T.H. Nguyen; Ines Schauvinhold; Joseph P. Noel; Eran Pichersky; Eyal Fridman

Genetic analysis of interspecific populations derived from crosses between the wild tomato species Solanum habrochaites f. sp. glabratum, which synthesizes and accumulates insecticidal methylketones (MK), mostly 2-undecanone and 2-tridecanone, in glandular trichomes, and cultivated tomato (Solanum lycopersicum), which does not, demonstrated that several genetic loci contribute to MK metabolism in the wild species. A strong correlation was found between the shape of the glandular trichomes and their MK content, and significant associations were seen between allelic states of three genes and the amount of MK produced by the plant. Two genes belong to the fatty acid biosynthetic pathway, and the third is the previously identified Methylketone Synthase1 (MKS1) that mediates conversion to MK of β-ketoacyl intermediates. Comparative transcriptome analysis of the glandular trichomes of F2 progeny grouped into low- and high-MK-containing plants identified several additional genes whose transcripts were either more or less abundant in the high-MK bulk. In particular, a wild species-specific transcript for a gene that we named MKS2, encoding a protein with some similarity to a well-characterized bacterial thioesterase, was approximately 300-fold more highly expressed in F2 plants with high MK content than in those with low MK content. Genetic analysis in the segregating population showed that MKS2s significant contribution to MK accumulation is mediated by an epistatic relationship with MKS1. Furthermore, heterologous expression of MKS2 in Escherichia coli resulted in the production of methylketones in this host.


Journal of Biological Chemistry | 2014

Origins of fluorescence in evolved bacteriophytochromes.

Shyamosree Bhattacharya; Michele E. Auldridge; Heli Lehtivuori; Janne A. Ihalainen; Katrina T. Forest

Background: Near-infrared (NIR) fluorescent bacteriophytochromes are valuable for optical imaging in mammals. Results: Reversal of one position in the fluorescent phytochrome variant IFP1.4 led to the brightest monomeric NIR phytofluor known. Conclusion: Crystallography shows that limiting motion and changing polarity in the chromophore binding pocket increase fluorescence. Significance: Understanding the source of increased fluorescence in NIR fluorescent phytofluors is essential for further improving these novel imaging tools. Use of fluorescent proteins to study in vivo processes in mammals requires near-infrared (NIR) biomarkers that exploit the ability of light in this range to penetrate tissue. Bacteriophytochromes (BphPs) are photoreceptors that couple absorbance of NIR light to photoisomerization, protein conformational changes, and signal transduction. BphPs have been engineered to form NIR fluorophores, including IFP1.4, Wi-Phy, and the iRFP series, initially by replacement of Asp-207 by His. This position was suggestive because its main chain carbonyl is within hydrogen-bonding distance to pyrrole ring nitrogens of the biliverdin chromophore, thus potentially functioning as a crucial transient proton sink during photoconversion. To explain the origin of fluorescence in these phytofluors, we solved the crystal structures of IFP1.4 and a comparison non-fluorescent monomeric phytochrome DrCBDmon. Met-186 and Val-288 in IFP1.4 are responsible for the formation of a tightly packed hydrophobic hub around the biliverdin D ring. Met-186 is also largely responsible for the blue-shifted IFP1.4 excitation maximum relative to the parent BphP. The structure of IFP1.4 revealed decreased structural heterogeneity and a contraction of two surface regions as direct consequences of side chain substitutions. Unexpectedly, IFP1.4 with Asp-207 reinstalled (IFPrev) has a higher fluorescence quantum yield (∼9%) than most NIR phytofluors published to date. In agreement, fluorescence lifetime measurements confirm the exceptionally long excited state lifetimes, up to 815 ps, in IFP1.4 and IFPrev. Our research helps delineate the origin of fluorescence in engineered BphPs and will facilitate the wide-spread adoption of phytofluors as biomarkers.


The Plant Cell | 2012

Emergent Decarboxylase Activity and Attenuation of α/β-Hydrolase Activity during the Evolution of Methylketone Biosynthesis in Tomato

Michele E. Auldridge; Yongxia Guo; Michael B. Austin; Justin Ramsey; Eyal Fridman; Eran Pichersky; Joseph P. Noel

Methylketones are insecticidal compounds that accumulate in certain plants as defense against herbivorous pests. Methylketone biosynthesis is a two-step process within the plant, with the second step, decarboxylation of 3-keto acids, catalyzed by Methylketone Synthase1 (MKS1). This study focuses on understanding the enzymatic mechanism of MKS1, which differs from proteins of the same structural class. Specialized methylketone-containing metabolites accumulate in certain plants, in particular wild tomatoes in which they serve as toxic compounds against chewing insects. In Solanum habrochaites f. glabratum, methylketone biosynthesis occurs in the plastids of glandular trichomes and begins with intermediates of de novo fatty acid synthesis. These fatty-acyl intermediates are converted via sequential reactions catalyzed by Methylketone Synthase2 (MKS2) and MKS1 to produce the n-1 methylketone. We report crystal structures of S. habrochaites MKS1, an atypical member of the α/β-hydrolase superfamily. Sequence comparisons revealed the MKS1 catalytic triad, Ala-His-Asn, as divergent to the traditional α/β-hydrolase triad, Ser-His-Asp. Determination of the MKS1 structure points to a novel enzymatic mechanism dependent upon residues Thr-18 and His-243, confirmed by biochemical assays. Structural analysis further reveals a tunnel leading from the active site consisting mostly of hydrophobic residues, an environment well suited for fatty-acyl chain binding. We confirmed the importance of this substrate binding mode by substituting several amino acids leading to an alteration in the acyl-chain length preference of MKS1. Furthermore, we employ structure-guided mutagenesis and functional assays to demonstrate that MKS1, unlike enzymes from this hydrolase superfamily, is not an efficient hydrolase but instead catalyzes the decarboxylation of 3-keto acids.


Recent Advances in Phytochemistry | 2006

Chapter Five – Tomato Glandular Trichomes As a Model System for Exploring Evolution of Specialized Metabolism in a Single Cell

Eyal Fridman; Takao Koezuka; Michele E. Auldridge; Michael B. Austin; Joseph P. Noel; Eran Pichersky

The tomato glandular trichomes function as a site of biosynthesis as well as the site of storage of specialized metabolites. This chapter aims to further study the mechanisms that underlie the divergence of primary metabolism (fatty acid biosynthesis) to specialized metabolism (methylketones) in these cells. Molecular factors that regulate this divergence will be identified by combining quantitative trait loci (QTL) analysis of interspecific crosses, derived from crosses between wild species and the cultivated tomato, with transcriptosome and proteome analysis of the glandular trichomes. This integrated approach will develop an infrastructure that will be used to import natural insecticide compounds into the cultivated varieties, and will set a model on how to explore specialized metabolism in other plants.


Current Opinion in Plant Biology | 2006

Plant carotenoid cleavage oxygenases and their apocarotenoid products.

Michele E. Auldridge; Donald R. McCarty; Harry J. Klee

Collaboration


Dive into the Michele E. Auldridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrina T. Forest

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph P. Noel

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Eyal Fridman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael B. Austin

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Shyamosree Bhattacharya

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Geng Yu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge