Michele E. Hardy
Montana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michele E. Hardy.
Journal of Virology | 2000
Pamela J. Glass; Laura J. White; Judith M. Ball; Isabelle Leparc-Goffart; Michele E. Hardy; Mary K. Estes
ABSTRACT Norwalk virus (NV) is a causative agent of acute epidemic nonbacterial gastroenteritis in humans. The inability to cultivate NV has required the use of molecular techniques to examine the genome organization and functions of the viral proteins. The function of the NV protein encoded by open reading frame 3 (ORF 3) has been unknown. In this paper, we report the characterization of the NV ORF 3 protein expressed in a cell-free translation system and in insect cells and show its association with recombinant virus-like particles (VLPs) and NV virions. Expression of the ORF 3 coding region in rabbit reticulocyte lysates resulted in the production of a single protein with an apparent molecular weight of 23,000 (23K protein), which is not modified by N-linked glycosylation. The ORF 3 protein was expressed in insect cells by using two different baculovirus recombinants; one recombinant contained the entire 3′ end of the genome beginning with the ORF 2 coding sequences (ORFs 2+3), and the second recombinant contained ORF 3 alone. Expression from the construct containing both ORF 2 and ORF 3 resulted in the expression of a single protein (23K protein) detected by Western blot analysis with ORF 3-specific peptide antisera. However, expression from a construct containing only the ORF 3 coding sequences resulted in the production of multiple forms of the ORF 3 protein ranging in size from 23,000 to 35,000. Indirect-immunofluorescence studies using an ORF 3 peptide antiserum showed that the ORF 3 protein is localized to the cytoplasm of infected insect cells. The 23K ORF 3 protein was consistently associated with recombinant VLPs purified from the media of insect cells infected with a baculovirus recombinant containing the entire 3′ end of the NV genome. Western blot analysis of NV purified from the stools of NV-infected volunteers revealed the presence of a 35K protein as well as multiple higher-molecular-weight bands specifically recognized by an ORF 3 peptide antiserum. These results indicate that the ORF 3 protein is a minor structural protein of the virion.
The EMBO Journal | 2003
Katie F. Daughenbaugh; Chris S. Fraser; John W. B. Hershey; Michele E. Hardy
The positive‐strand RNA genomes of caliciviruses are not capped, but are instead covalently linked at their 5′ ends to a viral protein called VPg. The lack of a cap structure typical of eukaryotic mRNA and absence of an internal ribosomal entry site suggest that VPg may function in translation initiation on calicivirus RNA. This hypothesis was tested by analyzing binding of Norwalk virus VPg to translation initiation factors. The eIF3d subunit of eIF3 was identified as a binding partner of VPg by yeast two‐hybrid analysis. VPg bound to purified mammalian eIF3 and to eIF3 in mammalian cell lysates. To test the effects of the VPg–eIF3 interaction on translation, VPg was added to cell‐free translation reactions programmed with either capped reporter RNA, an RNA containing an EMCV internal ribosomal entry site (IRES) or an RNA with a cricket paralysis virus IRES. VPg inhibited translation of all reporter RNAs in a dose‐dependent manner. Together, the data suggest that VPg may play a role in initiating translation on calicivirus RNA through unique protein–protein interactions with the translation machinery.
PLOS Pathogens | 2009
Joel W. Graff; Khalil Ettayebi; Michele E. Hardy
Mechanisms by which viruses counter innate host defense responses generally involve inhibition of one or more components of the interferon (IFN) system. Multiple steps in the induction and amplification of IFN signaling are targeted for inhibition by viral proteins, and many of the IFN antagonists have direct or indirect effects on activation of latent cytoplasmic transcription factors. Rotavirus nonstructural protein NSP1 blocks transcription of type I IFNα/β by inducing proteasome-dependent degradation of IFN-regulatory factors 3 (IRF3), IRF5, and IRF7. In this study, we show that rotavirus NSP1 also inhibits activation of NFκB and does so by a novel mechanism. Proteasome-mediated degradation of inhibitor of κB (IκBα) is required for NFκB activation. Phosphorylated IκBα is a substrate for polyubiquitination by a multisubunit E3 ubiquitin ligase complex, Skp1/Cul1/F-box, in which the F-box substrate recognition protein is β-transducin repeat containing protein (β-TrCP). The data presented show that phosphorylated IκBα is stable in rotavirus-infected cells because infection induces proteasome-dependent degradation of β-TrCP. NSP1 expressed in isolation in transiently transfected cells is sufficient to induce this effect. Targeted degradation of an F-box protein of an E3 ligase complex with a prominent role in modulation of innate immune signaling and cell proliferation pathways is a unique mechanism of IFN antagonism and defines a second strategy of immune evasion used by rotaviruses.
Journal of Virology | 2002
Joel W. Graff; Dana N. Mitzel; Carla M. Weisend; Michelle L. Flenniken; Michele E. Hardy
ABSTRACT The rotavirus nonstructural protein NSP1 is the least conserved protein in the rotavirus genome, and its function in the replication cycle is not known. We employed NSP1 as bait in the yeast two-hybrid interaction trap to identify candidate cellular partners of NSP1 that may provide clues to its function. Interferon regulatory factor 3 (IRF-3) was identified as an NSP1 interactor. NSP1 synthesized in rotavirus-infected cells bound IRF-3 in a glutathione S-transferase pull-down assay, indicating that the interaction was not unique to the two-hybrid system. NSP1 of murine rotavirus strain EW also interacted with IRF-3. NSP1 deletion and point mutants were constructed to map domains important in the interaction between NSP1 and IRF-3. The data suggest that a binding domain resides in the C terminus of NSP1 and that the N-terminal conserved zinc finger is important but not sufficient to mediate binding to IRF-3. We predict that a role for NSP1 in rotavirus-infected cells is to inhibit activation of IRF-3 and diminish the cellular interferon response.
Journal of Virology | 2003
Khalil Ettayebi; Michele E. Hardy
ABSTRACT Norwalk virus (NV), a reference strain of human calicivirus in the Norovirus genus of the family Caliciviridae, contains a positive-strand RNA genome with three open reading frames. ORF1 encodes a 1,789-amino-acid polyprotein that is processed into nonstructural proteins that include an NTPase, VPg, protease, and RNA-dependent RNA polymerase. The N-terminal protein p48 of ORF1 shows no significant sequence similarity to viral or cellular proteins, and its function in the human calicivirus replication cycle is not known. The lack of sequence similarity to any protein in the public databases suggested that p48 may have a unique function in the NV replication cycle or, alternatively, may perform a characterized function in replication by a unique mechanism. In this report, it is shown that p48 displays a vesicular localization pattern in transfected cells when fused to the fluorescent reporter EYFP. A predicted transmembrane domain at the C terminus of p48 was not necessary for the observed localization pattern, but this domain was sufficient to redirect localization of EYFP to a fluorescent pattern consistent with the Golgi apparatus. A yeast two-hybrid screen identified the SNARE regulator vesicle-associated membrane protein-associated protein A (VAP-A) as a binding partner of p48. Biochemical assays confirmed that p48 and VAP-A interact and form a stable complex in mammalian cells. Furthermore, expression of the vesicular stomatitis virus G glcyoprotein on the cell surface was inhibited when cells coexpressed p48, suggesting that p48 disrupts intracellular protein trafficking.
Virus Research | 2002
Michele E. Hardy; Tammera J Crone; Jessica E Brower; Khalil Ettayebi
The Norwalk Virus (NV) is the prototype strain of human caliciviruses that cause epidemic outbreaks of foodborne and waterborne gastroenteritis. These viruses do not grow in cell culture and the mechanisms of virus replication are obscure. The NV genome is a 7.7 kb ssRNA molecule that encodes three open reading frames (ORFs). The first ORF is a 1789 amino acid polyprotein that is processed into nonstructural proteins by a viral protease similar to the picornavirus 3C protease. Primary cleavage sites in the ORF1 polyprotein of two Norwalk-like viruses have been identified as QG dipeptides. We studied primary cleavage sites in the NV polyprotein and residues surrounding the scissile bond that are important in substrate recognition. A series of mutations were made at amino acids occupying positions implicated as important in cleavage site recognition for chymotrypsin-like viral proteases. We determined that effective processing at amino acid 398 to release the N-terminal p48 protein is necessary for proteolytic release of the p41 protein, that the P4 position N-terminal to the scissile bond is important for efficient processing, and that substitution of large hydrophobic residues were tolerated at this position. Finally, we defined the acidic residue of the 3CL(pro) catalytic site.
Journal of Virology | 2009
Adrish Sen; Ningguo Feng; Khalil Ettayebi; Michele E. Hardy; Harry B. Greenberg
ABSTRACT Rotavirus host range restriction forms a basis for strain attenuation although the underlying mechanisms are unclear. In mouse fibroblasts, the inability of rotavirus NSP1 to mediate interferon (IFN) regulatory factor 3 (IRF3) degradation correlates with IFN-dependent restricted replication of the bovine UK strain but not the mouse EW and simian RRV strains. We found that UK NSP1 is unable to degrade IRF3 when expressed in murine NIH 3T3 cells in contrast to the EW and RRV NSP1 proteins. Surprisingly, UK NSP1 expression led to IRF3 degradation in simian COS7 cells, indicating that IRF3 degradation by NSP1 is host cell dependent, a finding further supported using adenovirus-expressed NSP1 from NCDV bovine rotavirus. By expressing heterologous IRF3 proteins in complementary host cells, we found that IRF3 is the minimal host factor constraining NSP1 IRF3-degradative ability. NSP1-mediated IRF3 degradation was enhanced by transfection of double-stranded RNA (dsRNA) in a host cell-specific manner, and in IRF3-dependent positive regulatory domain III reporter assays, NSP1 inhibited IRF3 function in response to pathway activation by dsRNA, TBK-1, IRF3, or constitutively activated IRF3-5D. An interesting observation arising from these experiments is the ability of transiently expressed UK NSP1 to inhibit poly(I:C)-directed IRF3 activity in NIH 3T3 cells in the absence of detectable IRF3 degradation, an unexpected finding since UK virus infection was unable to block IFN secretion, and UK NSP1 expression did not result in suppression of IRF3-directed activation of the pathway. RRV and EW but not UK NSP1 was proteasomally degraded, requiring E1 ligase activity, although NSP1 degradation was not required for IRF3 degradation. Using a chimeric RRV NSP1 protein containing the carboxyl 100 residues derived from UK NSP1, we found that the RRV NSP1 carboxyl 100 residues are critical for its IRF3 inhibition in murine cells but are not essential for NSP1 degradation. Thus, NSP1s ability to degrade IRF3 is host cell dependent and is independent of NSP1 proteasomal degradation.
Journal of Virology | 2007
Vance P. Lochridge; Michele E. Hardy
ABSTRACT Noroviruses cause epidemic outbreaks of acute viral gastroenteritis worldwide, and the number of reported outbreaks is increasing. Human norovirus strains do not grow in cell culture. However, murine norovirus (MNV) replicates in the RAW 264.7 macrophage cell line and thus provides a tractable model to investigate norovirus interactions with host cells. Epitopes recognized by monoclonal antibodies (MAbs) against the human norovirus strains Norwalk virus and Snow Mountain virus (SMV) identified regions in the P domain of major capsid protein VP1 important for interactions with putative cellular receptors. To determine if there was a relationship between domains of MNV VP1 and VP1 of human norovirus strains involved in cell binding, epitope mapping by phage display was performed with an MNV-1-neutralizing MAb, A6.2.1. A consensus peptide, GWWEDHGQL, was derived from 20 third-round phage clones. A synthetic peptide containing this sequence and constrained through a disulfide linkage reacted strongly with the A6.2.1 MAb, whereas the linear sequence did not. Four residues in the A6.2.1-selected peptide, G327, G333, Q334, and L335, aligned with amino acid residues in the P2 domain of MNV-1 VP1. This sequence is immediately adjacent to the epitope recognized by anti-SMV MAb 61.21. Neutralization escape mutants selected with MAb A6.2.1 contained a leucine-to-phenylalanine substitution at position 386 in the P2 domain. The predicted location of these residues on VP1 suggests that the phage peptide and the mutation in the neutralization-resistant viruses may be in close proximity to each other and to residues reported to be important for carbohydrate binding to VP1 of human norovirus strains.
Virus Genes | 2003
Vance P. Lochridge; Michele E. Hardy
Snow Mountain virus (SMV) belongs to the Norovirus genus of the Caliciviridae family. SMV is a genogroup II (GII) reference strain of human enteric caliciviruses associated with epidemic gastroenteritis. In this study, the positive sense RNA genome sequence of SMV was determined to be 7,537 nucleotides in length excluding the 3′ polyadenylated tract. The genome is organized into three open reading frames typical of caliciviruses in the Norovirus genus. Pairwise sequence alignments showed SMV ORF1 is highly conserved with other genogroup II noroviruses, and most closely related to GII strains Melksham and Hawaii virus. In addition, comparative sequence analyses indicated that SMV is likely a recombinant norovirus. VP1/VP2 proteins self-assembled into virus-like particles (VLPs) when expressed in insect cells by a recombinant baculovirus. Characterization of one clone that expressed VP1, but failed to assemble into VLPs, identified histidine residue 91 as important for particle assembly under standard conditions of expression.
Antimicrobial Agents and Chemotherapy | 2013
Danyelle R. Long; Julia Mead; Jay M. Hendricks; Michele E. Hardy; Jovanka M. Voyich
ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) has become a major source of infection in hospitals and in the community. Increasing antibiotic resistance in S. aureus strains has created a need for alternative therapies to treat disease. A component of the licorice root Glycyrrhiza spp., 18β-glycyrrhetinic acid (GRA), has been shown to have antiviral, antitumor, and antibacterial activity. This investigation explores the in vitro and in vivo effects of GRA on MRSA pulsed-field gel electrophoresis (PFGE) type USA300. GRA exhibited bactericidal activity at concentrations exceeding 0.223 μM. Upon exposure of S. aureus to sublytic concentrations of GRA, we observed a reduction in expression of key virulence genes, including saeR and hla. In murine models of skin and soft tissue infection, topical GRA treatment significantly reduced skin lesion size and decreased the expression of saeR and hla genes. Our investigation demonstrates that at high concentrations GRA is bactericidal to MRSA and at sublethal doses it reduces virulence gene expression in S. aureus both in vitro and in vivo.