Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michele Seeber is active.

Publication


Featured researches published by Michele Seeber.


Bioinformatics | 2007

Wordom: a program for efficient analysis of molecular dynamics simulations

Michele Seeber; Marco Cecchini; Francesco Rao; Giovanni Settanni; Amedeo Caflisch

Wordom is a versatile program for manipulation of molecular dynamics trajectories and efficient analysis of simulations. Original tools in Wordom include a procedure to evaluate significance of sampling for principal component analysis as well as modules for clustering multiple conformations and evaluation of order parameters for folding and aggregation. The program was developed with special emphasis on user-friendliness, effortless addition of new modules and efficient handling of large sets of trajectories.


Journal of Computational Chemistry | 2011

Wordom: A user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces

Michele Seeber; Angelo Felline; Francesco Raimondi; Stefanie Muff; Ran Friedman; Francesco Rao; Amedeo Caflisch; Francesca Fanelli

Wordom is a versatile, user‐friendly, and efficient program for manipulation and analysis of molecular structures and dynamics. The following new analysis modules have been added since the publication of the original Wordom paper in 2007: assignment of secondary structure, calculation of solvent accessible surfaces, elastic network model, motion cross correlations, protein structure network, shortest intra‐molecular and inter‐molecular communication paths, kinetic grouping analysis, and calculation of mincut‐based free energy profiles. In addition, an interface with the Python scripting language has been built and the overall performance and user accessibility enhanced. The source code of Wordom (in the C programming language) as well as documentation for usage and further development are available as an open source package under the GNU General Purpose License from http://wordom.sf.net.


Journal of Chemical Physics | 2004

Replica exchange molecular dynamics simulations of amyloid peptide aggregation

Marco Cecchini; Francesco Rao; Michele Seeber; Amedeo Caflisch

The replica exchange molecular dynamics (REMD) approach is applied to four oligomeric peptide systems. At physiologically relevant temperature values REMD samples conformation space and aggregation transitions more efficiently than constant temperature molecular dynamics (CTMD). During the aggregation process the energetic and structural properties are essentially the same in REMD and CTMD. A condensation stage toward disordered aggregates precedes the beta-sheet formation. Two order parameters, borrowed from anisotropic fluid analysis, are used to monitor the aggregation process. The order parameters do not depend on the peptide sequence and length and therefore allow to compare the amyloidogenic propensity of different peptides


Journal of Medicinal Chemistry | 2004

Synthesis, Screening, and Molecular Modeling of New Potent and Selective Antagonists at the α1d Adrenergic Receptor

Amedeo Leonardi; Daniela Barlocco; Federica Montesano; Giorgio Cignarella; Gianni Motta; Rodolfo Testa; Elena Poggesi; Michele Seeber; Pier G. De Benedetti; Francesca Fanelli

In the present study, more than 75 compounds structurally related to BMY 7378 have been designed and synthesized. Structural variations of each part of the reference molecule have been introduced, obtaining highly selective ligands for the alpha(1d) adrenergic receptor. The molecular determinants for selectivity at this receptor are essentially held by the phenyl substituent in the phenylpiperazine moiety. The integration of an extensive SAR analysis with docking simulations using the rhodopsin-based models of the three alpha(1)-AR subtypes and of the 5-HT(1A) receptor provides significant insights into the characterization of the receptor binding sites as well as into the molecular determinants of ligand selectivity at the alpha(1d)-AR and the 5-HT(1A) receptors. The results of multiple copies simultaneous search (MCSS) on the substituted phenylpiperazines together with those of manual docking of compounds BMY 7378 and 69 into the putative binding sites of the alpha(1a)-AR, alpha(1b)-AR, alpha(1d)-AR, and the 5-HT(1A) receptors suggest that the phenylpiperazine moiety would dock into a site formed by amino acids in helices 3, 4, 5, 6 and extracellular loop 2 (E2), whereas the spirocyclic ring of the ligand docks into a site formed by amino acids of helices 1, 2, 3, and 7. This docking mode is consistent with the SAR data produced in this work. Furthermore, the binding site of the imide moiety does not allow for the simultaneous involvement of the two carbonyl oxygen atoms in H-bonding interactions, consistent with the SAR data, in particular with the results obtained with the lactam derivative 128. The results of docking simulations also suggest that the second and third extracellular loops may act as selectivity filters for the substituted phenylpiperazines. The most potent and selective compounds for alpha(1d) adrenergic receptor, i.e., 69 (Rec 26D/038) and 128 (Rec 26D/073), are characterized by the presence of the 2,5-dichlorophenylpiperazine moiety.


BMC Bioinformatics | 2006

Quaternary structure predictions of transmembrane proteins starting from the monomer: a docking-based approach

Daniele Casciari; Michele Seeber; Francesca Fanelli

BackgroundWe introduce a computational protocol for effective predictions of the supramolecular organization of integral transmembrane proteins, starting from the monomer. Despite the demonstrated constitutive and functional importance of supramolecular assemblies of transmembrane subunits or proteins, effective tools for structure predictions of such assemblies are still lacking. Our computational approach consists in rigid-body docking samplings, starting from the docking of two identical copies of a given monomer. Each docking run is followed by membrane topology filtering and cluster analysis. Prediction of the native oligomer is therefore accomplished by a number of progressive growing steps, each made of one docking run, filtering and cluster analysis. With this approach, knowledge about the oligomerization status of the protein is required neither for improving sampling nor for the filtering step. Furthermore, there are no size-limitations in the systems under study, which are not limited to the transmembrane domains but include also the water-soluble portions.ResultsBenchmarks of the approach were done on ten homo-oligomeric membrane proteins with known quaternary structure. For all these systems, predictions led to native-like quaternary structures, i.e. with Cα-RMSDs lower than 2.5 Å from the native oligomer, regardless of the resolution of the structural models.ConclusionCollectively, the results of this study emphasize the effectiveness of the prediction protocol that will be extensively challenged in quaternary structure predictions of other integral membrane proteins.


Journal of the American Chemical Society | 2008

Mechanisms of Inter- and Intramolecular Communication in GPCRs and G Proteins

Francesco Raimondi; Michele Seeber; Pier G. De Benedetti; Francesca Fanelli

This study represents the first attempt to couple, by computational experiments, the mechanisms of intramolecular and intermolecular communication concerning a guanidine nucleotide exchange factor (GEF), the thromboxane A2 receptor (TXA2R), and the cognate G protein (Gq) in its heterotrimeric GDP-bound state. Two-way pathways mediate the communication between the receptor-G protein interface and both the agonist binding site of the receptor and the nucleotide binding site of the G protein. The increase in solvent accessibility in the neighborhoods of the highly conserved E/DRY receptor motif, in response to agonist binding, is instrumental in favoring the penetration of the C-terminus of Gqalpha in between the cytosolic ends of H3, H5, and H6. The arginine of the E/DRY motif is predicted to be an important mediator of the intramolecular and intermolecular communication involving the TXA2R. The receptor-G protein interface is predicted to involve multiple regions from the receptor and the G protein alpha-subunit. However, receptor contacts with the C-terminus of the alpha5-helix seem to be the major players in the receptor-catalyzed motion of the alpha-helical domain with respect to the Ras-like domain and in the formation of a nucleotide exit route in between the alphaF-helix and beta6/alpha5 loop of Gqalpha. The inferences from this study are of wide interest, as they are expected to apply to the whole rhodopsin family, given also the considerable G protein promiscuity.


The FASEB Journal | 2010

Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants

Francesca Fanelli; Michele Seeber

Disease‐causing missense mutations in membrane proteins, such as rhodopsin mutations associated with the autosomal dominant form of retinitis pigmentosa (ADRP), are often linked to defects in folding and/or trafficking. The mechanical unfolding of wild‐type rhodopsin was compared with that of 20 selected ADRP‐linked mutants more or less defective in folding and retinal binding. Rhodopsin fold is characterized by networks of amino acids in the retinal and G‐protein binding sites likely to play a role in the stability and function of the protein. The distribution of highly connected nodes in the network reflects the existence of a diffuse intramolecular communication inside and between the 2 poles of the helix bundle, which makes pathogenic mutations share similar phenotypes irrespective of topological and physicochemical differences between them. Because of this communication, the ADRP‐linked rhodopsin mutations share a more or less marked ability to impair selected hubs in the protein structure network. The extent of this structural effect relates to the severity of the biochemical defect caused by mutation. The investigative strategy employed in this study is likely to apply to all structurally known membrane proteins particularly susceptible to misassembly‐causing mutations.—Fanelli, F., Seeber, M. Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants. FASEB J. 24, 3196–3209 (2010). www.fasebj.org


Journal of Chemical Theory and Computation | 2013

A Mixed Protein Structure Network and Elastic Network Model Approach to Predict the Structural Communication in Biomolecular Systems: The PDZ2 Domain from Tyrosine Phosphatase 1E As a Case Study

Francesco Raimondi; Angelo Felline; Michele Seeber; Simona Mariani; Francesca Fanelli

Graph theory is being increasingly used to study the structural communication in biomolecular systems. This requires incorporating information on the systems dynamics, which is time-consuming and not suitable for high-throughput investigations. We propose a mixed Protein Structure Network (PSN) and Elastic Network Model (ENM)-based strategy, i.e., PSN-ENM, for fast investigation of allosterism in biological systems. PSN analysis and ENM-Normal Mode Analysis (ENM-NMA) are implemented in the structural analysis software Wordom, freely available at http://wordom.sourceforge.net/ . The method performs a systematic search of the shortest communication pathways that traverse a protein structure. A number of strategies to compare the structure networks of a protein in different functional states and to get a global picture of communication pathways are presented as well. The approach was validated on the PDZ2 domain from tyrosine phosphatase 1E (PTP1E) in its free (APO) and peptide-bound states. PDZ domains are, indeed, the systems whose structural communication and allosteric features are best characterized both in vitro and in silico. The agreement between predictions by the PSN-ENM method and in vitro evidence is remarkable and comparable to or higher than that reached by more time-consuming computational approaches tested on the same biological system. Finally, the PSN-ENM method was able to reproduce the salient communication features of unbound and bound PTP1E inferred from molecular dynamics simulations. High speed makes this method suitable for high throughput investigation of the communication pathways in large sets of biomolecular systems in different functional states.


Journal of Chemical Information and Computer Sciences | 2003

Molecular dynamics simulations of the ligand-induced chemical information transfer in the 5-HT(1A) receptor.

Michele Seeber; Pier G. De Benedetti; Francesca Fanelli

Comparative molecular dynamics simulations of the 5-HT1A receptor in its empty as well as agonist- (i.e. active) and antagonist-bound (i.e. nonactive) forms have been carried out. The agonists 5-HT and (R)-8-OH-DPAT as well as the antagonist WAY100635 have been employed. The results of this study strengthen the hypothesis that the receptor portions close to the E/DRY/W motif, with prominence to the cytosolic extensions of helices 3 and 6, are particularly susceptible to undergo structural modification in response to agonist binding. Despite the differences in the structural/dynamics behavior of the two agonists when docked into the 5-HT1A receptor, they both exert a destabilization of the intrahelical and interhelical interactions found in the empty and antagonist-bound receptor forms between the arginine of the E/DRY sequence and both D133(3.49) and E340(6.30). For both agonists, the chemical information transfer from the extracellular to the cytosolic domains is mediated by a cluster of aromatic amino a...


FEBS Letters | 2007

Monomeric dark rhodopsin holds the molecular determinants for transducin recognition: insights from computational analysis.

Daniele Dell’Orco; Michele Seeber; Francesca Fanelli

In this computational study, we have investigated the implications of rhodopsin (Rho) oligomerization in transducin (Gt) recognition. The results of docking simulations between heterotrimeric Gt and monomeric, dimeric and tetrameric inactive Rho corroborate the hypothesis that Rho and Gt can be found coupled already in the dark. Moreover, our extensive computational analysis suggests that the most likely Rho:Gt stoichiometry is the 1:1 one. This means that the essential molecular determinants for Gt recognition and activation are contained in one Rho monomer. In this respect, the complex between one Rho molecule and one heterotrimeric Gt should be considered as the functional unit.

Collaboration


Dive into the Michele Seeber's collaboration.

Top Co-Authors

Avatar

Francesca Fanelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Francesco Raimondi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Angelo Felline

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Pier G. De Benedetti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Casciari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Simona Mariani

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge