Michèle Souyri
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michèle Souyri.
Cell | 1990
Michèle Souyri; Isabelle Vigon; Jean-François Penciolelli; Jean-Michel Heard; Pierre Tambourin; Françoise Wendling
The myeloproliferative leukemia virus (MPLV) is an acute leukemogenic murine replication-defective retrovirus. By sequencing the envelope gene of a biologically active MPLV clone, we found that this region comprises a novel oncogene named v-mpl in phase with two parts of the Friend murine leukemia virus envelope gene. The MPLV env region could encode an env-mpl fusion polypeptide that presents the characteristics of a transmembrane protein. We show that in vitro infection of bone marrow cells with helper-free MPLV readily yields immortalized factor-independent hematopoietic cell lines of different lineages. In mice, the c-mpl proto-oncogene is expressed in hematopoietic tissues as a 3 kb mRNA. Since v-mpl shares strong structural analogies with the hematopoietin receptor superfamily, it is likely that MPLV has transduced a truncated form of an as yet unidentified hematopoietic growth factor receptor.
Molecular and Cellular Biology | 1996
Françoise Porteu; M C Rouyez; Laurence Cocault; L Bénit; Martine Charon; F Picard; Sylvie Gisselbrecht; Michèle Souyri; Isabelle Dusanter-Fourt
Thrombopoietin (TPO) is the major regulator of growth and differentiation of megakaryocytes. To identify functionally important regions in the cytoplasmic domain of the TPO receptor, mpl, we introduced wild-type mpl and deletion mutants of murine mpl into the granulocyte-macrophage colony-stimulating factor (GM-CSF)- or erythropoietin (EPO)-dependent human cell line UT7. TPO induced differentiation of UT7-Wtmpl cells, not parental UT7 cells, along the megakaryocytic lineage, as evidenced by decreased proliferation, changes in cell morphology, and increased surface expression and mRNA levels of megakaryocytic markers CD41, CD61, and CD42b. When UT7-mpl cells were cultured long-term in EPO instead of GM-CSF, the TPO effect was dominant over that of EPO. Moreover, the differentiation induced by TPO was more pronounced for cells shifted from EPO to TPO than for cells shifted from GM-CSF to TPO, as shown by the appearance of polyploid cells. Mutational analysis of the cytoplasmic domain of mpl showed that proliferation and maturation functions of mpl can be uncoupled. Two functional regions were identified: (i) the first 69 amino acids comprising the cytokine receptor motifs, box I and box 2, which are necessary for both TPO-induced mitogenesis and maturation; and (ii) amino acids 71 to 94, which are dispensable for proliferation but required for differentiation. Surprisingly, however, EPO could complement this latter domain for TPO-induced differentiation, suggesting a close relationship between EPO and TPO signaling.
Development | 2007
Laurence Petit-Cocault; Cécile Volle-Challier; Maud Fleury; Bruno Péault; Michèle Souyri
Cytokine signaling pathways are important in promoting hematopoietic stem cell (HSC) self-renewal, proliferation and differentiation. Mpl receptor and its ligand, TPO, have been shown to play an essential role in the early steps of adult hematopoiesis. We previously demonstrated that the cytoplasmic domain of Mpl promotes hematopoietic commitment of embryonic stem cells in vitro, and postulated that Mpl could be important in the establishment of definitive hematopoiesis. To answer this question, we investigated the temporal expression of Mpl during mouse development by in situ hybridization. We found Mpl expression in the HSCs clusters emerging in the AGM region, and in the fetal liver (FL) as early as E10.5. Using Mpl-/- mice, the functional relevance of Mpl expression was tested by comparing the hematopoietic progenitor (HP) content, long-term hematopoietic reconstitution (LTR) abilities and HSC content of control and Mpl-/- embryos at different times of development. In the AGM, we observed delayed production of HSCs endowed with normal LTR but presenting a self-renewal defect. During FL development, we detected a decrease in HP and HSC potential associated with a defect in amplification and self-renewal/survival of the lin- AA4.1+ Sca1+ population of HSCs. These results underline the dual role of Mpl in the generation and expansion of HSCs during establishment of definitive hematopoiesis.
Blood | 2010
Soizic Guihard; Denis Clay; Laurence Cocault; Nathalie Saulnier; Paule Opolon; Michèle Souyri; Gilles Pagès; Jacques Pouysségur; Françoise Porteu; Murielle Gaudry
The mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 (ERK1) and ERK2 are among the main signal transduction molecules, but little is known about their isoform-specific functions in vivo. We have examined the role of ERK1 in adult hematopoiesis with ERK1(-/-) mice. Loss of ERK1 resulted in an enhanced splenic erythropoiesis, characterized by an accumulation of erythroid progenitors in the spleen, without any effect on the other lineages or on bone marrow erythropoiesis. This result suggests that the ablation of ERK1 induces a splenic stress erythropoiesis phenotype. However, the mice display no anemia. Deletion of ERK1 did not affect erythropoietin (EPO) serum levels or EPO/EPO receptor signaling and was not compensated by ERK2. Splenic stress erythropoiesis response has been shown to require bone morphogenetic protein 4 (BMP4)-dependent signaling in vivo and to rely on the expansion of a resident specialized population of erythroid progenitors, termed stress erythroid burst-forming units (BFU-Es). A great expansion of stress BFU-Es and increased levels of BMP4 mRNA were found in ERK1(-/-) spleens. The ERK1(-/-) phenotype can be transferred by bone marrow cells. These findings show that ERK1 controls a BMP4-dependent step, regulating the steady state of splenic erythropoiesis.
Human Genetics | 1989
Maryvonne Le Coniat; Michèle Souyri; Isabelle Vigon; Françoise Wendling; Pierre Tambourin; Roland Berger
SummaryThe human homologue of the recently isolated myeloproliferative leukemia virus, a retrovirus that induces myeloproliferative disorder in mouse, has been mapped in man to chromosome band 1p34 by in situ hybridization.
Blood | 2010
Estelle Oberlin; Maud Fleury; Denis Clay; Laurence Petit-Cocault; Jean-Jacques Candelier; Benoît Mennesson; Thierry Jaffredo; Michèle Souyri
Edification of the human hematopoietic system during development is characterized by the production of waves of hematopoietic cells separated in time, formed in distinct embryonic sites (ie, yolk sac, truncal arteries including the aorta, and placenta). The embryonic liver is a major hematopoietic organ wherein hematopoietic stem cells (HSCs) expand, and the future, adult-type, hematopoietic cell hierarchy becomes established. We report herein the identification of a new, transient, and rare cell population in the human embryonic liver, which coexpresses VE-cadherin, an endothelial marker, CD45, a pan-hematopoietic marker, and CD34, a common endothelial and hematopoietic marker. This population displays an outstanding self-renewal, proliferation, and differentiation potential, as detected by in vitro and in vivo hematopoietic assays compared with its VE-cadherin negative counterpart. Based on VE-cadherin expression, our data demonstrate the existence of 2 phenotypically and functionally separable populations of multipotent HSCs in the human embryo, the VE-cadherin(+) one being more primitive than the VE-cadherin(-) one, and shed a new light on the hierarchical organization of the embryonic liver HSC compartment.
The International Journal of Developmental Biology | 2010
Estelle Oberlin; Bouchra El Hafny; Laurence Petit-Cocault; Michèle Souyri
Hematopoietic stem cells (HSCs) arise first in the third week of human ontogeny inside yolk sac developing blood vessels, and independently, from the wall of the embryonic aorta and vitelline arteries one week later. HSCs produced in the yolk sac and in the embryonic truncal arteries migrate to and transiently colonize the embryonic liver (EL), and thereafter the bone marrow (BM), their permanent site of residence. At the moment, the origin of human HSCs is still controversial; one of the main hypotheses being that they are generated by hemogenic endothelial cells (ECs). To prove definitively the endothelial origin of HSCs that arise within the human embryo, we previously purified ECs from either the yolk sac or the truncal arteries and reported that they were able to produce blood cells in vitro. We then found that some of the HSCs present in the human EL were co-expressing vascular endothelial (VE)-cadherin, an endothelial marker, CD45, a pan-hematopoietic marker, and CD34, a common endothelial and hematopoietic marker, and demonstrated that these HSCs bearing a dual hemato-endothelial phenotype were endowed with remarkably high self renewal and proliferative potentials. Furthermore, a transgenic mouse model based on the VE-cadherin cis-regulating elements that we engineered to trace the fate of the first VE-cadherin expressing cells allowed us to clearly demonstrate that a majority of adult BM HSCs derived from a VE-cadherin ancestor. Altogether our studies strongly suggest that at least a part of both the human and the murine hematopoietic systems arise from an endothelium-like ancestor.
Haematologica | 2012
Marion Roques; Charles Durand; Rodolphe Gautier; Pierre-Yves Canto; Laurence Petit-Cocault; Laurent Yvernogeau; Dominique Dunon; Michèle Souyri; Thierry Jaffredo
CD105 is an auxiliary receptor for the transforming growth factor beta superfamily, highly expressed on proliferating endothelial cells and adult hematopoietic stem cells. Because CD105 mRNA expression was reported in the developing aortic region, we further characterized its expression profile in the aorta and examined the hematopoietic potential of CD105+ cells. Aortic endothelial cells, intra-aortic hematopoietic cell clusters and the purified cell fraction enriched in progenitor/hematopoietic stem cell activity expressed CD105. Aortic hematopoietic short-term clonogenic progenitors were highly enriched in the CD105intermediate population whereas more immature long-term progenitors/hematopoietic stem cells are contained within the CD105high population. This places CD105 on the short list of molecules discriminating short-term versus long-term progenitors in the aorta. Furthermore, decreasing transforming growth factor beta signaling increases the number of clonogenic progenitors. This suggests that CD105 expression level defines a hierarchy among aortic hematopoietic cells allowing purification of clonogenic versus more immature hematopoietic progenitors, and that the transforming growth factor beta pathway plays a critical role in this process.
The International Journal of Developmental Biology | 2010
Maud Fleury; Laurence Petit-Cocault; Denis Clay; Michèle Souyri
In a previous study, we underlined the functional role of the TPO receptor, Mpl, in the establishment of definitive mouse hematopoiesis, by demonstrating that the lack of Mpl led to a delayed production of definitive hematopoietic cells in the aorta-gonad-mesonephros (AGM) region, and resulted in the production of hematopoietic stem cells (HSCs) with an impaired activity at E11.5. In order to more accurately estimate the role of Mpl during generation of HSCs in the aorta, we performed an analysis of these AGMs at the time of the first HSC emergence (E10.5). Our results indicated that while Mpl-/- AGMs were found to contain more hematopoietic cells (HC) than C57Bl6 AGMs at E10.5, a defect in the expansion process of the HC/HSCs was detected in explant cultures of these AGMs, likely due to an increased apoptosis of these cells. To determine the molecular mechanisms by which invalidation of Mpl receptor affects the temporal distribution and expansion of HC/HSCs in the AGM, a study of the transcription level of of Mpl target genes was conducted. Expression of Runx1, a master transcription factor for the formation of hematopoietic progenitor (HP) cells and HSCs from the vasculature, as well as expression of Meis1 and HoxB4, known to play a role in self-renewal and expansion of HSCs, were found to be down regulated in E10.5 Mpl-/- AGMs. Our data indicate that Mpl is an active player during the first steps of definitive hematopoiesis establishment through direct regulation of the expression of transcription factors or genes important for the self-renewal, proliferation and apoptosis of HSCs.
Journal of The American Society of Nephrology | 2017
Yosu Luque; Olivia Lenoir; Philippe Bonnin; Lise Hardy; Anna Chipont; Sandrine Placier; Sophie Vandermeersch; Yi-Chun Xu-Dubois; Blaise Robin; Hélène Lazareth; Michèle Souyri; Léa Guyonnet; Véronique Baudrie; Eric Camerer; Eric Rondeau; Laurent Mesnard; Pierre-Louis Tharaux
FSGS, the most common primary glomerular disorder causing ESRD, is a complex disease that is only partially understood. Progressive sclerosis is a hallmark of FSGS, and genetic tracing studies have shown that parietal epithelial cells participate in the formation of sclerotic lesions. The loss of podocytes triggers a focal activation of parietal epithelial cells, which subsequently form cellular adhesions with the capillary tuft. However, in the absence of intrinsic podocyte alterations, the origin of the pathogenic signal that triggers parietal epithelial cell recruitment remains elusive. In this study, investigation of the role of the endothelial PAS domain-containing protein 1 (EPAS1), a regulatory α subunit of the hypoxia-inducible factor complex, during angiotensin II-induced hypertensive nephropathy provided novel insights into FSGS pathogenesis in the absence of a primary podocyte abnormality. We infused angiotensin II into endothelial-selective Epas1 knockout mice and their littermate controls. Although the groups presented with identical high BP, endothelial-specific Epas1 gene deletion accentuated albuminuria with severe podocyte lesions and recruitment of pathogenic parietal glomerular epithelial cells. These lesions and dysfunction of the glomerular filtration barrier were associated with FSGS in endothelial Epas1-deficient mice only. These results indicate that endothelial EPAS1 has a global protective role during glomerular hypertensive injuries without influencing the hypertensive effect of angiotensin II. Furthermore, these findings provide proof of principle that endothelial-derived signaling can trigger FSGS and illustrate the potential importance of the EPAS1 endothelial transcription factor in secondary FSGS.
Collaboration
Dive into the Michèle Souyri's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs