Michele Tanturli
University of Florence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michele Tanturli.
Haematologica | 2011
Serena Giuntoli; Michele Tanturli; Federico Di Gesualdo; Valentina Barbetti; Elisabetta Rovida; Persio Dello Sbarba
Background Incubation of chronic myeloid leukemia cells in hypoxia inhibits growth and selects BCR/Abl-independent cells with stem cell properties which are refractory to imatinib-mesylate. This study aimed to characterize the relationship of this refractoriness with glucose availability in the environment. Design and Methods K562 or primary chronic myeloid leukemia cells were cultured at 0.1% O2, different cell densities and glucose concentrations. The stem and progenitor cell potential of these cultures at different times of incubation in relation to BCR/Ablprotein expression and sensitivity to imatinib-mesylate was explored by transferring cells to growth-permissive secondary cultures in normoxia, according to the Culture-Repopulating Ability assay methodology. Results Hypoxia-resistant cells maintained BCR/Ablprotein expression until glucose was no longer available in primary hypoxic cultures, where glucose availability appeared to regulate cell number and the balance between the enrichment of cells with kinetic properties typical of stem or progenitor cells. Cells surviving merely hypoxic conditions were, upon transfer to secondary cultures, immediately available for numerical expansion due to the maintained BCR/Ablprotein expression, and were consequently sensitive to imatinib-mesylate. Instead, BCR/Ablprotein–negative cells selected in primary cultures under oxygen/glucose shortage underwent a delayed numerical expansion in secondary cultures, which was completely refractory to imatinib-mesylate. Cells with the latter properties were also found in primary chronic myeloid leukemia explants. Conclusions Glucose shortage in hypoxia was shown to represent the condition selecting BCR/Ablprotein–negative cells refractory to imatinib-mesylate from either chronic myeloid leukemia lines or patients. These cells, exhibiting stem cell properties in vitro, are metabolically suited to home to stem cell niches in vivo and so may represent the chronic myeloid leukemia cell subset responsible for minimal residual disease.
PLOS ONE | 2011
Michele Tanturli; Serena Giuntoli; Valentina Barbetti; Elisabetta Rovida; Persio Dello Sbarba
We previously demonstrated that severe hypoxia inhibits growth of Chronic Myeloid Leukemia (CML) cells and selects stem cells where BCR/Ablprotein is suppressed, although mRNA is not, so that hypoxia-selected stem cells, while remaining leukemic, are independent of BCR/Abl signaling and thereby refractory to Imatinib-mesylate. The main target of this study was to address the effects of the proteasome inhibitor Bortezomib (BZ) on the maintenance of stem or progenitor cells in hypoxic primary cultures (LC1), by determining the capacity of LC1 cells to repopulate normoxic secondary cultures (LC2) and the kinetics of this repopulation. Unselected K562 cells from day-2 hypoxic LC1 repopulated LC2 with rapid, progenitor-type kinetics; this repopulation was suppressed by BZ addition to LC1 at time 0, but completely resistant to day-1 BZ, indicating that progenitors require some time to adapt to stand hypoxia. K562 cells selected in hypoxic day-7 LC1 repopulated LC2 with stem-type kinetics, which was largely resistant to BZ added at either time 0 or day 1, indicating that hypoxia-selectable stem cells are BZ-resistant per se, i.e. before their selection. Furthermore, these cells were completely resistant to day-6 BZ, i.e. after selection. On the other hand, hypoxia-selected stem cells from CD34-positive cells of blast-crisis CML patients appeared completely resistant to either time-0 or day-1 BZ. To exploit in vitro the capacity of CML cells to adapt to hypoxia enabled to detect a subset of BZ-resistant leukemia stem cells, a finding of particular relevance in light of the fact that our experimental system mimics the physiologically hypoxic environment of bone marrow niches where leukemia stem cells most likely home and sustain minimal residual disease in vivo. This suggests the use of BZ as an enhanced strategy to control CML. in particular to prevent relapse of disease, to be considered with caution and to need further deepening.
Scientific Reports | 2017
Monica Di Paola; Cristina Sani; Ann Maria Clemente; Anna Iossa; Eloisa Perissi; Giuseppe Castronovo; Michele Tanturli; Damariz Rivero; Federico Cozzolino; Duccio Cavalieri; Francesca Carozzi; Carlotta De Filippo; Maria Gabriella Torcia
Changes in cervico-vaginal microbiota with Lactobacillus depletion and increased microbial diversity facilitate human papillomavirus (HPV) infection and might be involved in viral persistence and cancer development. To define the microbial Community State Types (CSTs) associated with high-risk HPV−persistence, we analysed 55 cervico-vaginal samples from HPV positive (HPV+) women out of 1029 screened women and performed pyrosequencing of 16S rDNA. A total of 17 samples from age-matched HPV negative (HPV−) women were used as control. Clearance or Persistence groups were defined by recalling women after one year for HPV screening and genotyping. A CST IV subgroup, with bacterial genera such as Gardnerella, Prevotella, Megasphoera, Atopobium, frequently associated with anaerobic consortium in bacterial vaginosis (BV), was present at baseline sampling in 43% of women in Persistence group, and only in 7.4% of women in Clearance group. Atopobium genus was significantly enriched in Persistence group compared to the other groups. Sialidase-encoding gene from Gardnerella vaginalis, involved in biofilm formation, was significantly more represented in Persistence group compared to the other groups. Based on these data, we consider the CST IV-BV as a risk factor for HPV persistence and we propose Atopobium spp and sialidase gene from G. vaginalis as microbial markers of HPV−persistence.
Blood | 2017
Giulia Cheloni; Michele Tanturli; Ignazia Tusa; Ngoc DeSouza; Yi Shan; Antonella Gozzini; Frederic Mazurier; Elisabetta Rovida; Shaoguang Li; Persio Dello Sbarba
Chronic myeloid leukemia (CML) is a hematopoietic stem cell (HSC)-driven neoplasia characterized by expression of the constitutively active tyrosine kinase BCR/Abl. CML therapy based on tyrosine kinase inhibitors (TKIs) is highly effective in inducing remission but not in targeting leukemia stem cells (LSCs), which sustain minimal residual disease and are responsible for CML relapse following discontinuation of treatment. The identification of molecules capable of targeting LSCs appears therefore of primary importance to aim at CML eradication. LSCs home in bone marrow areas at low oxygen tension, where HSCs are physiologically hosted. This study addresses the effects of pharmacological inhibition of hypoxia-inducible factor-1 (HIF-1), a critical regulator of LSC survival, on the maintenance of CML stem cell potential. We found that the HIF-1 inhibitor acriflavine (ACF) decreased survival and growth of CML cells. These effects were paralleled by decreased expression of c-Myc and stemness-related genes. Using different in vitro stem cell assays, we showed that ACF, but not TKIs, targets the stem cell potential of CML cells, including primary cells explanted from 12 CML patients. Moreover, in a murine CML model, ACF decreased leukemia development and reduced LSC maintenance. Importantly, ACF exhibited significantly less-severe effects on non-CML hematopoietic cells in vitro and in vivo. Thus, we propose ACF, a US Food and Drug Administration (FDA)-approved drug for nononcological use in humans, as a novel therapeutic approach to prevent CML relapse and, in combination with TKIs, enhance induction of remission.
Microbes and Infection | 2014
Ann Maria Clemente; Carlo Severini; Giuseppe Castronovo; Michele Tanturli; Eloisa Perissi; Federico Cozzolino; Maria Gabriella Torcia
Interference with transforming growth factor-β-mediated pathways helps several parasites to survive for long periods in immunocompetent hosts. Macrophages and dendritic cells infected by Toxoplasma, Leishmania and Plasmodium spp. produce large amounts of transforming growth factor-β and induce the differentiation of antigen-specific T-regulatory cells. Mechanisms not mediated by antigen-presentation could also account for the expansion of T-regulatory cells in parasitic diseases and they also might be mediated through transforming growth factor-β-receptor activated pathways. We explored the properties of soluble extracts from Leishmania infantum promastigotes, Toxoplasma gondii tachyzoites, Trichinella spiralis muscle larvae to expand the pool of T-regulatory cells in a population of polyclonally activated T cells in the absence of accessory cells, and compared their effects to those induced by Plasmodium falciparum extracts. Similarly to P. falciparum, L. infantum extracts activate the latent soluble form of transforming growth factor-β and that bound to the membrane of activated T lymphocytes. The interaction of the active cytokine with transforming growth factor-β receptor induces Foxp3 expression by activated lymphocytes, favoring their conversion through the T-regulatory phenotype. Both Toxoplasma gondii and L. infantum extracts are able to induce transforming growth factor-β production by activated T cells in the absence of accessory cells.
Methods of Molecular Biology | 2016
Giulia Cheloni; Michele Tanturli
Chronic myeloid leukemia (CML) is a stem cell-driven disorder caused by the BCR/Abl oncoprotein, a constitutively active tyrosine kinase (TK). Chronic-phase CML patients are treated with impressive efficacy with TK inhibitors (TKi) such as imatinib mesylate (IM). However, rather than definitively curing CML, TKi induces a state of minimal residual disease, due to the persistence of leukemia stem cells (LSC) which are insensitive to this class of drugs. LSC persistence may be due to different reasons, including the suppression of BCR/Abl oncoprotein. It has been shown that this suppression follows incubation in low oxygen under appropriate culture conditions and incubation times.Here we describe the culture repopulation ability (CRA) assay, a non-clonogenic assay capable - together with incubation in low oxygen - to reveal in vitro stem cells endowed with marrow repopulation ability (MRA) in vivo. The CRA assay can be used, before moving to animal tests, as a simple and reliable method for the prescreening of drugs potentially active on CML and other leukemias with respect to their activity on the more immature leukemia cell subsets.
Cell Cycle | 2015
E Del Poggetto; Michele Tanturli; N Ben-Califa; Antonella Gozzini; Ignazia Tusa; Giulia Cheloni; Ilaria Marzi; Maria Grazia Cipolleschi; Y Kashman; D Neumann; Elisabetta Rovida; P Dello Sbarba
We previously showed that incubation of chronic myeloid leukemia (CML) cells in very low oxygen selects a cell subset where the oncogenetic BCR/Abl protein is suppressed and which is thereby refractory to tyrosine kinase inhibitors used for CML therapy. In this study, salarin C, an anticancer macrolide extracted from the Fascaplysinopsis sponge, was tested as for its activity on CML cells, especially after their incubation in atmosphere at 0.1% oxygen. Salarin C induced mitotic cycle arrest, apoptosis and DNA damage. Salarin C also concentration-dependently inhibited the maintenance of stem cell potential in cultures in low oxygen of either CML cell lines or primary cells. Surprisingly, the drug also concentration-dependently enforced the maintenance of BCR/Abl signaling in low oxygen, an effect which was paralleled by the rescue of sensitivity of stem cell potential to IM. These results suggest a potential use of salarin C for the suppression of CML cells refractory to tyrosine kinase inhibitors
PLOS ONE | 2017
Giuseppe Castronovo; Ann Maria Clemente; Alberto Antonelli; Marco Maria D'Andrea; Michele Tanturli; Eloisa Perissi; Sara Paccosi; Astrid Parenti; Federico Cozzolino; Gian Maria Rossolini; Maria Gabriella Torcia
ST258-K. pneumoniae (ST258-KP) strains, the most widespread multidrug-resistant hospital-acquired pathogens, belong to at least two clades differing in a 215 Kb genomic region that includes the cluster of capsule genes. To investigate the effects of the different capsular phenotype on host-pathogen interactions, we studied representatives of ST258-KP clades, KKBO-1 and KK207-1, for their ability to activate monocytes and myeloid dendritic cells from human immune competent hosts. The two ST258-KP strains strongly induced the production of inflammatory cytokines. Significant differences between the strains were found in their ability to induce the production of IL-1β: KK207-1/clade I was much less effective than KKBO-1/clade II in inducing IL-1β production by monocytes and dendritic cells. The activation of NLRP3 inflammasome pathway by live cells and/or purified capsular polysaccharides was studied in monocytes and dendritic cells. We found that glibenclamide, a NLRP3 inhibitor, inhibits more than 90% of the production of mature IL-1β induced by KKBO1 and KK207-1. KK207-1 was always less efficient compared to KKBO-1 in: a) inducing NLRP3 and pro-IL-1β gene and protein expression; b) in inducing caspase-1 activation and pro-IL-1β cleavage. Capsular composition may play a role in the differential inflammatory response induced by the ST258-KP strains since capsular polysaccharides purified from bacterial cells affect NLRP3 and pro-IL-1β gene expression through p38MAPK- and NF-κB-mediated pathways. In each of these functions, capsular polysaccharides from KK207-1 were significantly less efficient compared to those purified from KKBO-1. On the whole, our data suggest that the change in capsular phenotype may help bacterial cells of clade I to partially escape innate immune recognition and IL-1β-mediated inflammation.
PLOS ONE | 2017
Ann Maria Clemente; Giuseppe Castronovo; Alberto Antonelli; Marco Maria D'Andrea; Michele Tanturli; Eloisa Perissi; Sara Paccosi; Astrid Parenti; Federico Cozzolino; Gian Maria Rossolini; Maria Gabriella Torcia
The spread of KPC-type carbapenemases is mainly attributed to the global dissemination of Klebsiella pneumoniae (KP) strains belonging to the clonal group (CG) 258, including sequence type (ST) 258 and other related STs. Two distinct clades of CG258-KP have evolved, which differ mainly for the composition of their capsular polysaccharides, and recent studies indicate that clade 1 evolved from an ancestor of clade 2 by recombination of a genomic fragment carrying the capsular polysaccharide (cps) locus. In this paper, we investigated the ability of two ST258-KP strains, KKBO-1 and KK207-1, selected as representatives of ST258-KP clade 2 and clade 1, respectively, to activate an adaptive immune response using ex vivo-stimulation of PBMC from normal donors as an experimental model. Our data showed that KKBO-1 (clade 2) induces a Th17 response more efficiently than KK207-1 (clade 1): the percentage of CD4+IL17+ cells and the production of IL-17A were significantly higher in cultures with KKBO-1 compared to cultures with KK207-1. While no differences in the rate of bacterial internalization or in the bacteria-induced expression of CD86 and HLA-DR by monocytes and myeloid dendritic cells were revealed, we found that the two strains significantly differ in inducing the production of cytokines involved in the adaptive immune response, as IL-1β, IL-23 and TNF-α, by antigen-presenting cells, with KKBO-1 being a more efficient inducer than KK207-1. The immune responses elicited by KK207-1 were comparable to those elicited by CIP 52.145, a highly virulent K. pneumoniae reference strain known to escape immune-inflammatory responses. Altogether, present results suggest that CG258-KP of the two clades are capable of inducing a different response of adaptive immunity in the human host.
European Journal of Clinical Microbiology & Infectious Diseases | 2015
Ann Maria Clemente; Lisa Rizzetto; Giuseppe Castronovo; Eloisa Perissi; Michele Tanturli; Federico Cozzolino; Duccio Cavalieri; Franco Fusi; Francesca Cialdai; Leonardo Vignali; Maria Gabriella Torcia; Monica Monici