Michele Zucali
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michele Zucali.
Geological Society, London, Special Publications | 2005
M. Iole Spalla; Michele Zucali; Silvia di Paola; Guido Gosso
Abstract A correlation procedure of scattered tectonic and metamorphic imprints in the reactivated crust is elaborated from recent analytical work in three Alpine metamorphic complexes. It consists of: interpretation of the time-sequence of tectonic fabrics and test of their kinematic coherence; determination of paragenetic compatibility among the mineralogical support of mesoscopic fabrics; cross-validation of mineral transformation over-prints; construction of P-T-d-t paths using a time-sequence of parageneses. The representation of structural and metamorphic information conveys the full tectono-metamorphic history on maps displaying combined tectonic and metamorphic effects. Shape and size definition of metamorphic units, now individuated mainly using their lithological homogeneity and dominant metamorphic imprint, is improved. The analysis of interaction between fabric and metamorphic imprint distributions, proposed in three Alpine examples, shows that the dominant metamorphic imprint does not coincide with Tmax-PTmax of each inferred P-T-d-t loop; the dominant metamorphic imprint is that given by the mineralogical support of the most pervasive fabric. Different metamorphic imprints may dominate in adjacent areas of a single tectono-metamorphic unit (TMU), or equivalent metamorphic imprints may dominate in different TMUs. Therefore, lithostratigraphic setting and dominant metamorphic imprint are inefficient to contour TMUs in terrains with polyphase deformation and metamorphism, without considering multiscale heterogeneity of superposed synmetamorphic fabrics.
Geological Society, London, Special Publications | 2010
B. E. Hobbs; Alison Ord; Maria Iole Spalla; Guido Gosso; Michele Zucali
Abstract Feedback relations between deformation and metamorphic mineral reactions, derived using the principles of non-equilibrium thermodynamics, indicate that mineral reactions progress to completion in high-strain areas, driven by energy dissipated from inelastic deformation. These processes, in common with other time-dependent geological processes, lead to both strain, and strain-rate, hardening/softening in rate-dependent materials. In particular, strain-rate softening leads to the formation of shear zones, folds and boudins by non-Biot mechanisms. Strain-softening alone does not produce folding or boudinage and results in low-strain shear zones; strain-rate softening is necessary to produce realistic strains and structures. Reaction–mechanical feedback relations operating at the scale of 10–100 m produce structures similar to those that arise from thermal–mechanical feedback relations at coarser (kilometre) scales and reaction–diffusion–mechanical feedback relations at finer (millimetre) scales. The dominance of specific processes at various length scales but the development of similar structures by all coupled processes leads to scale invariance. The concept of non-equilibrium mineral stability diagrams is introduced. In principle, deformation influences the position of mineral stability fields relative to equilibrium stability fields; the effect is negligible for the quartz→coesite reaction but may be important for others. Application of these results to the development of structures and mineral reactions in the Italian Alps is discussed.
Swiss Journal of Geosciences | 2014
Paola Manzotti; Michel Ballèvre; Michele Zucali; Martin Robyr; Martin Engi
AbstractThis study reviews and synthesizes the present knowledge on the Sesia–Dent Blanche nappes, the highest tectonic elements in the Western Alps (Switzerland and Italy), which comprise pieces of pre-Alpine basement and Mesozoic cover. All of the available data are integrated in a crustal-scale kinematic model with the aim to reconstruct the Alpine tectono-metamorphic evolution of the Sesia–Dent Blanche nappes. Although major uncertainties remain in the pre-Alpine geometry, the basement and cover sequences of the Sesia–Dent Blanche nappes are seen as part of a thinned continental crust derived from the Adriatic margin. The earliest stages of the Alpine evolution are interpreted as recording late Cretaceous subduction of the Adria-derived Sesia–Dent Blanche nappes below the South-Alpine domain. During this subduction, several sheets of crustal material were stacked and separated by shear zones that rework remnants of their Mesozoic cover. The recently described Roisan-Cignana Shear Zone of the Dent Blanche Tectonic System represents such a shear zone, indicating that the Sesia–Dent Blanche nappes represent a stack of several individual nappes. During the subsequent subduction of the Piemonte–Liguria Ocean large-scale folding of the nappe stack (including the Roisan-Cignana Shear Zone) took place under greenschist facies conditions, which indicates partial exhumation of the Dent Blanche Tectonic System. The entrance of the Briançonnais micro-continent within the subduction zone led to a drastic change in the deformation pattern of the Alpine belt, with rapid exhumation of the eclogite-facies ophiolite-bearing units and thrust propagation towards the foreland. Slab breakoff probably was responsible for allowing partial melting in the mantle and Oligocene intrusions into the most internal parts of the Sesia–Dent Blanche nappes. Finally, indentation of the Adriatic plate into the orogenic wedge resulted in the formation of the Vanzone back-fold, which marks the end of the pervasive ductile deformation within the Sesia–Dent Blanche nappes during the earliest Miocene.
Geological Society, London, Special Publications | 2014
Maria Iole Spalla; Davide Zanoni; Anna Maria Marotta; Gisella Rebay; Manuel Roda; Michele Zucali; Guido Gosso
Abstract Records of Variscan structural and metamorphic imprints in the Alps indicate that before Pangaea fragmentation, the continental lithosphere was thermally and mechanically perturbed during Variscan subduction and collision. A diffuse igneous activity associated with high-temperature (HT) metamorphism, accounting for a Permian–Triassic high thermal regime, is peculiar to the Alpine area and has been interpreted as induced either by late-orogenic collapse or by lithospheric extension and thinning leading to continental rifting. Intra-continental basins hosting Permian volcanic products have been interpreted as developed either in a late-collisional strike-slip or in a continental rifting setting. Two-dimensional finite element models have been used to shed light on the transition between the late Variscan orogenic evolution and lithospheric thinning that, since Permian–Triassic time, announced the opening of Tethys. Comparison of model predictions with a broad set of natural metamorphic, structural, sedimentary and igneous data suggests that the late collisional gravitational evolution does not provide a thermo-mechanical outline able to justify mantle partial melting, evidenced by emplacement of huge gabbro bodies and regional-scale high-temperature metamorphism during Permian–Triassic time. An active extension is required to obtain model predictions comparable with natural data inferred from the volumes of the Alpine basement that were poorly reactivated during Mesozoic–Tertiary convergence.
International Geology Review | 2010
Maria Iole Spalla; Guido Gosso; Anna Maria Marotta; Michele Zucali; Francesca Salvi
Subduction–collision zones are characterized by the amalgamation and disaggregation of lithospheric slices; such processes work in competition in constructing the tectonic architecture of metamorphic belts. Determination of contours for thermally and structurally characterized units is crucial to define the variations in sizes of such slices involved in the dynamic evolution of an active margin. The dimensions of these entities change over time and must be reconstructed using the structural and metamorphic evolution of the basement rocks as tracers, rather than by simply relying on lithologic associations. They constitute tectono-metamorphic units (TMUs) and represent discrete portions of the orogenic crust influenced by a sequence of metamorphic and textural changes. Their translational trajectories and shape changes during deformation cannot simply be derived from the analysis of the geometries and kinematics of tectonic units but from a joint reconstruction of quantitative P-T-d-t paths. The TMU investigation tool bears a marked thermo-tectonic connotation and, through modelling, offers the opportunity to test the physical compatibilities of interconnected variables, such as density, viscosity, and heat transfer, with the interpretative geologic history. Comparison between modelling predictions and natural data obtained by this analytical approach has helped solve longstanding ambiguities on the pre-Alpine and Alpine geodynamic evolution of the different continental units of the Central and Western Alps and explore the crustal levels of protolith derivation. Three-dimensional estimation of structurally and chemically re-equilibrated volumes aids in the evaluation of physical parameters chosen for the numerical modelling.
Geological Magazine | 2013
Paola Manzotti; Michele Zucali
The Valpelline unit is a large slice of continental crust constituting the Austroalpine Dent Blanche nappe (NW Italy). The pre-Alpine evolution of this unit holds important clues about the Palaeozoic crustal structure at the northern margin of the Adria continent, about the history of rifting in the Alpine region, and thus about the thermomechanical conditions that preceded the Alpine convergent evolution. Several stages of the deformation history and of partial re-equilibration were identified, combining meso- and micro-structural analyses with thermobarometry. Reconstructed pre-Alpine P–T–t –d paths demonstrate that the Valpelline unit experienced an early stage at pressures between 4.5 and 6.5 kbar followed by migmatite formation. A subsequent stage reached amphibolite to granulite facies conditions. This stage was associated with the development of the most penetrative fabrics affecting all of the Valpelline lithotypes. The pre-Alpine evolution ended with a weak deformation associated with a local mineral-chemical re-equilibration under greenschist facies conditions at ≈ 4 kbar and T < 450°C. A Permo-Mesozoic lithospheric extension is thought to be responsible for asthenosphere upwelling, thereby causing high temperature metamorphism at medium pressure and widespread partial melting, which led to upper crustal magmatic activity.
Swiss Journal of Geosciences | 2014
Paola Manzotti; Michele Zucali; Michel Ballèvre; Martin Robyr; Martin Engi
The Dent Blanche Tectonic System (DBTS) is a composite thrust sheet derived from the previously thinned passive Adriatic continental margin. A kilometric high-strain zone, the Roisan-Cignana Shear Zone (RCSZ) defines the major tectonic boundary within the DBTS and separates it into two subunits, the Dent Blanche s.s. nappe to the northwest and the Mont Mary nappe to the southeast. Within this shear zone, tectonic slices of Mesozoic and pre-Alpine meta-sediments became amalgamated with continental basement rocks of the Adriatic margin. The occurrence of high pressure assemblages along the contact between these tectonic slices indicates that the amalgamation occurred prior to or during the subduction process, at an early stage of the Alpine orogenic cycle. Detailed mapping, petrographic and structural analysis show that the Roisan-Cignana Shear Zone results from several superimposed Alpine structural and metamorphic stages. Subduction of the continental fragments is recorded by blueschist-facies deformation, whereas the Alpine collision is reflected by a greenschist facies overprint associated with the development of large-scale open folds. The post-nappe evolution comprises the development of low-angle brittle faults, followed by large-scale folding (Vanzone phase) and finally brittle extensional faults. The RCSZ shows that fragments of continental crust had been torn off the passive continental margin prior to continental collision, thus recording the entire history of the orogenic cycle. The role of preceding Permo-Triassic lithospheric thinning, Jurassic rifting, and ablative subduction processes in controlling the removal of crustal fragments from the reactivated passive continental margin is discussed. Results of this study constrain the temporal sequence of the tectono-metamorphic processes involved in the assembly of the DBTS, but they also show limits on the interpretation. In particular it remains difficult to judge to what extent pre-collisional rifting at the Adriatic continental margin preconditioned the efficiency of convergent processes, i.e. accretion, subduction, and orogenic exhumation.
Geological Society, London, Special Publications | 2010
Francesca Salvi; Maria Iole Spalla; Michele Zucali; Guido Gosso
Abstract The 3D reconstruction of geological bodies is an excellent tool for the representation of crustal structures and is applied here to understand related heterogeneities in the grain-scale fabrics; the western portion of the Languard–Tonale Alpine tectono-metamorphic unit (Austroalpine domain, Central Alps) allows evaluation of the per cent volume of textural reworking during polyphase pre-Alpine and Alpine deformations. The structural and metamorphic overprinting during the last deformation imprint involved less than 50% of rock volume; this estimate is obtained by discriminating domains that homogeneously recorded structural and metamorphic re-equilibration during crenulation–decrenulation cycles. These domains are reconstructed using a geograhpical information system (GIS) to manipulate field data and interpretative cross-sections as a means to constrain their 3D volumes. The degree of fabric evolution is integrated at the microscale with the estimate of the reactants/products ratio to infer the progress of metamorphic transformation related to advancing degree of mechanical reactivation. The correlation between degree of fabric evolution and progress of synkinematic metamorphic reactions shows that differences between pristine mineral assemblages v. pre-existing fabrics influence the rate of reaction accomplishment. Fabric evolution and degree of metamorphic transformation increase proportionally once above the threshold value of 60% of volume affected by fabric rejuvenation; metamorphic degree also influences the progress of metamorphic reactions.
Geological Society, London, Special Publications | 2002
Michele Zucali; D. Chateigner; M. Dugnani; L. Lutterotti; B. Ouladdiaf
Abstract X-ray and neutron diffraction techniques have been applied to quantitative texture analysis of a glaucophanite from the Sesia-Lanzo Zone (Western Italian Alps), naturally deformed under eclogite facies conditions. The comparison has been carried out in order to reveal the limits and problems of texture analysis related to strongly deformed polymineralic. Different methods of measuring and computing the orientation distribution function from diffraction data have been tested, in particular X-rays, direct peak integration, and neutron diffraction using Rietveld-texture analysis. Due to grain-size problems and heterogeneity of individual amphibole minerals, neutron radiation is shown to be the best probe for characterizing the whole rock: being more penetrative than conventional X-rays, a larger volume of the mineral aggregate is sampled, giving better statistics. However, results obtained by summing the corresponding individual spectra of at least three X-ray diffraction experiments on parallel slabs of the same specimen also give statistically valid, semiquantitative results that reproduce the overall textures. The quantitative texture analysis shows the strong texture of the two generations of amphiboles (AmpI and AmpII), which are mainly characterized by [001]*-directions at an angle of about 10° to the mineral lineation and by (hk0) planes describing girdles around the lineation. The texture is comparable to those described in the literature for amphibole deformed under different temperature and pressure conditions, and the pronounced asymmetry of the [001]* directions with respect to the mineral lineation is consistent with a non-coaxial component that occurs during the deformation.
Journal of Maps | 2011
Manuel Roda; Michele Zucali
Abstract Please click here to download the map associated with this article. The presented map displays the structural and metamorphic evolution of lithotypes from pre-Permian to present. We distinguish pre-Permian rocks (e.g., amphibolite, biotite-bearing gneiss and acid granulite) preserved as roof pendants (i.e., xenoliths) within Permian intrusives. Permian intrusives and hosted xenoliths are then re-equilibrated during Alpine evolution, producing coronitic to mylonitic metaintrusives, due to meter to kilometer-scale fabric gradients, and associated white mica-, glaucophane-bearing gneiss. The map also shows the traces of the superimposed foliations and the fold axial planes. The traces are distinguished on the basis of their relative chronology and mineralogical support. This information, reported on a single map, allows us to reconstruct the successive stages of this fragment belonging to the African plate continental crust, from the pre-Alpine extension, recorded by granulite- to amphibolite-facies xenolits, to the Permian intrusive phase (e.g., Mont Morion, Mont Collon and Matterhorn intrusives) lasting with the Alpine subduction-collision related evolution. The Mont Morion, part of the Mont Morion-Mont Collon-Matterhorn Complex of the Dent Blanche unit, may be interpreted as a multi-stadial Alpine km-scale shear zone, where Permian intrusive rocks are transformed into white mica chlorite-bearing or glaucophane-bearing gneisses along high-strain horizons (100 m-thick), while within low-strain cores (100- to 1000 m-thick), meta-intrusives preserve igneous features and xenoliths of amphibolites, acid granulites and biotite-bearing gneisses. In this paper, an outcrop tectono-metamorphic map (1:10,000 scale) is presented, based upon fieldwork at 1:5,000 together with an interpretative map (1:15,000 scale), in which three dimensional relationships are described, and micro- to mesoscopic fabric types are shown, corresponding to finite strain states recorded by rocks.