Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Micheline Kézia Cordeiro-Araújo is active.

Publication


Featured researches published by Micheline Kézia Cordeiro-Araújo.


Anais Da Academia Brasileira De Ciencias | 2014

Cyanobacteria, microcystins and cylindrospermopsin in public drinking supply reservoirs of Brazil

Maria do Carmo Bittencourt-Oliveira; Viviane Piccin-Santos; Ariadne do Nascimento Moura; Nísia Karine Cavalcanti Aragão-Tavares; Micheline Kézia Cordeiro-Araújo

Brazil has a history of blooms and contamination of freshwater systems by cyanobacterial toxins. The monitoring relevance of toxins from cyanobacteria in reservoirs for public supply is notorious given its high toxicity to mammals, included humans beings. The most recurrent toxins in Brazilian water bodies are microcystins (MC). However, the recent record of cylindrospermopsin (CYN) in northeastern Brazil, Pernambuco state, alerts us to the possibility that this could be escalating. This study reports occurrence of MC and CYN, quantified with ELISA, in 10 reservoirs, devoted to public drinking supply in northeastern Brazil. The composition and quantification of the cyanobacteria community associated with these water bodies is also presented. From 23 samples investigated for the presence of MC, and CYN, 22 and 8 out were positive, respectively. Considering the similarity of the cyanobacteria communities found in reservoirs from Pernambuco, including toxin-producing species associated to MC and CYN, we suggest that geographic spreading can be favored by these factors. These issues emphasize the need for increased monitoring of MC and CYN in drinking supply reservoirs in Brazil.


Ecotoxicology and Environmental Safety | 2016

Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners

Maria do Carmo Bittencourt-Oliveira; Micheline Kézia Cordeiro-Araújo; Mathias Ahii Chia; João Dias Toledo Arruda-Neto; Ênio Tiago de Oliveira; Flávio dos Santos

The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations.


Science of The Total Environment | 2016

Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment

Micheline Kézia Cordeiro-Araújo; Mathias Ahii Chia; João Dias Toledo Arruda-Neto; Valdemar Luiz Tornisielo; Franz Zirena Vilca; Maria do Carmo Bittencourt-Oliveira

Microcystin-LR (MC-LR) is one of the most toxic and common microcystins (MCs) variant found in aquatic ecosystems. Little is known about the possibility of recovering microcystins contaminated agricultural crops. The objectives of this study were to determine the bioaccumulation and depuration kinetics of MC-LR in leaf tissues of lettuce and arugula, and estimate the total daily intake (ToDI) of MC-LR via contaminated vegetables by humans. Arugula and lettuce were irrigated with contaminated water having 5 and 10μgL(-1) of MC-LR for 7days (bioaccumulation), and subsequently, with uncontaminated water for 7days (depuration). Quantification of MC-LR was performed by LC-MS/MS. The one-compartment biokinetic model was employed for MC-LR bioaccumulation and depuration data analysis. MC-LR was only accumulated in lettuce. After 7days of irrigation with uncontaminated water, over 25% of accumulated MC-LR was still retained in leaf tissues of plants treated with 10μgL(-1) MC-LR. Total daily toxin intake by adult consumers (60kg-bw) exceeded the 0.04μgMC-LRkg(-1) limit recommended by WHO. Bioaccumulation was found to be linearly proportional to the exposure concentration of the toxin, increasing over time; and estimated to become saturated after 30days of uninterrupted exposure. On the other hand, MC-LR depuration was less efficient at higher exposure concentrations. This is because biokinetic half-life calculations gave 2.9 and 3.7days for 5 and 10μgL(-1) MC-LR treatments, which means 29-37days are required to eliminate the toxin. For the first time, our results demonstrated the possibility of MC-LR decontamination of lettuce plants.


Brazilian Journal of Biology | 2014

Phytotoxicity associated to microcystins: a review

Bittencourt-Oliveira Mc; Talita Caroline Hereman; Micheline Kézia Cordeiro-Araújo; Macedo-Silva I; Carlos Tadeu dos Santos Dias; Fabiana Fumi Sasaki; Moura An

Microcystins (MC) are the most studied toxins of cyanobacteria since they are widely distributed and account for several cases of human and animal poisoning, being potent inhibitors of the serine/threonine protein phosphatases 1 (PP1) and 2A (PP2A). The phosphatases PP1 and PP2A are also present in plants, which may also suffer adverse effects due to the inhibition of these enzymes. In aquatic plants, biomass reduction is usually observed after absorption of cyanotoxins, which can bioaccumulate in its tissues. In terrestrial plants, the effects caused by microcystins vary from inhibition to stimulation as the individuals develop from seedling to adult, and include reduction of protein phosphatases 1 and 2A, oxidative stress, decreased photosynthetic activity and even cell apoptosis, as well as bioaccumulation in plant tissues. Thus, the irrigation of crop plants by water contaminated with microcystins is not only an economic problem but becomes a public health issue because of the possibility of food contamination, and this route of exposure requires careful monitoring by the responsible authorities.


Check List | 2011

First record of Ceratium Schrank, 1973 (Dinophyceae: Ceratiaceae) in freshwater ecosystems in the semiarid region of Brazil

Helton Soriano Bezerra de Oliveira; Ariadne do Nascimento Moura; Micheline Kézia Cordeiro-Araújo

This paper reports the first record of the genus Ceratium Schrank, 1973 in six freshwater ecosystems in the semiarid region of Brazil. From 2006 to 2010, 1176 samples were collected from 98 different sites using conical-cylindrical plankton nets with a 25 μm mesh size. Twenty individuals from each sample were measured for the obtainment of the morphological measurements. A 25% NaClO solution was used for the clarification of the cells and visualization of the plates. The appearance of this genus in such ecosystems is likely related to climatic and hydrological changes in the region.


Phycological Research | 2013

Active release of microcystins controlled by an endogenous rhythm in the cyanobacterium Microcystis aeruginosa

Micheline Kézia Cordeiro-Araújo; Maria do Carmo Bittencourt-Oliveira

The active release of microcystins in cyanobacterium Microcystis aeruginosa (Kützing) Kützing, strain BCCUSP232 was confirmed. The microcystin release is controlled by an endogenous rhythm, pointing to a biosynthetic pattern of toxins in cyanobacteria. Proofing tests for this active release were carried out by experiments at two independent 24 h cycles, light : dark and continuous light (12:12 h) along the exponential growing phase. Cultivation samples at light, temperature and photoperiod controlled conditions were collected in 2‐h intervals. Microcystin concentrations from the pellet aliquots (intracellular microcystin per cell‐quota –IMC) and supernatant (extracellular microcystin per equivalent cell‐quota – EMC) were quantified with enzyme linked immunosorbent assay. The IMC concentrations showed increases and decreases in both cycles. Decreases of IMC clearly demonstrate that the toxin was actively released to the surrounding medium and not by cell lysis. The total microcystins concentrations (IMC and EMC) between the light : dark and continuous light cycles presented similar variations between the same hours.


Harmful Algae | 2017

Potential human health risk assessment of cylindrospermopsin accumulation and depuration in lettuce and arugula

Micheline Kézia Cordeiro-Araújo; Mathias Ahii Chia; Maria do Carmo Bittencourt-Oliveira

The cyanobacterial toxin cylindrospermopsin (CYN) has become a globally important secondary metabolite due to the negative effect it has on human and animal health. As a means of evaluating the risk of human exposure to CYN, the bioaccumulation and depuration of the toxin in lettuce (Lactuca sativa L.) and arugula (Eruca sativa Mill.) were investigated, after irrigation with contaminated water. The vegetables were irrigated for 7days with CYN (3, 5 and 10μg/L) contaminated water (bioaccumulation phase), and subsequently, irrigated for 7days with uncontaminated distilled water (depuration phase). In general, the bioaccumulation of CYN in both vegetables decreased with increasing exposure concentration. Bioconcentration factor (BCF) of CYN increased with the progression of the experiment at 3.0μg/L CYN, while the reverse occurred at 5 and 10μg/L CYN. In arugula, BCF increased at all CYN exposure concentrations throughout the study. The depuration of CYN decreased with increasing exposure concentration but was highest in the plants of both species with the highest bioaccumulation of CYN. Specifically, in plants previously irrigated with water contaminated with 3, 5 and 10μg/L CYN, the depuration of the toxin was 60.68, 27.67 and 18.52% for lettuce, and 47, 46.21 and 27.67% for arugula, respectively. Human health risks assessment revealed that the consumption of approximately 10 to 40g of vegetables per meal will expose children and adults to 1.00-6.00ng CYN/kg body mass for lettuce and 2.22-7.70ng CYN/kg body mass for arugula. The irrigation of lettuce and arugula with contaminated water containing low CYN concentrations constitutes a potential human exposure route.


Ecotoxicology and Environmental Safety | 2017

Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions

Mathias Ahii Chia; Micheline Kézia Cordeiro-Araújo; Adriana Sturion Lorenzi; Maria do Carmo Bittencourt-Oliveira

Growing evidence suggests that some bioactive metabolites (e.g. cyanotoxins) produced by cyanobacteria have allelopathic potential, due to their inhibitory or stimulatory effects on competing species. Although a number of studies have shown that the cyanotoxin cylindrospermopsin (CYN) has variable effects on phytoplankton species, the impact of changing physicochemical conditions on its allelopathic potential is yet to be investigated. We investigated the physiological response of Microcystis aeruginosa (Cyanobacteria) and Acutodesmus acuminatus (Chlorophyta) to CYN under varying nitrogen and light conditions. At 24h, higher microcystins content of M. aeruginosa was recorded under limited light in the presence of CYN, while at 120h the lower levels of the toxins were observed in the presence of CYN under optimum light. Total MCs concentration was significantly (p<0.05) lowered by CYN after 120h of exposure under limited and optimum nitrogen conditions. On the other hand, there were no significant (p>0.05) changes in total MCs concentrations after exposure to CYN under high nitrogen conditions. As expected, limited light and limited nitrogen conditions resulted in lower cell density of both species, while CYN only significantly (p<0.05) inhibited the growth of M. aeruginosa. Regardless of the light or nitrogen condition, the presence of CYN increased internal H2O2 content of both species, which resulted in significant (p<0.05) changes in antioxidant enzyme (catalase, peroxidase, superoxide dismutase and glutathione S-transferase) activities. The oxidative stress caused by CYN was higher under limited light and limited nitrogen. These results showed that M. aeruginosa and A. acuminatus have variable response to CYN under changing light and nitrogen conditions, and demonstrate that need to consider changes in physicochemical conditions during ecotoxicological and ecophysiological investigations.


Brazilian Journal of Biology | 2015

Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria

Bittencourt-Oliveira Mc; Talita Caroline Hereman; Macedo-Silva I; Micheline Kézia Cordeiro-Araújo; Fabiana Fumi Sasaki; Carlos Tadeu dos Santos Dias

We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.


Brazilian Journal of Biology | 2014

Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil

Lira Ga; Moura An; Vilar Mc; Micheline Kézia Cordeiro-Araújo; Bittencourt-Oliveira Mc

The goal of this study was to analyse the vertical structure of the phytoplankton community at the Mundaú reservoir, located in the semi-arid region of northeastern Brazil, and to correlate it to environmental conditions over two distinct seasons, dry and rainy. Samples were collected bimonthly at eight depths in the dry and rainy season for analyses of the physical and chemical variables of the water, as well as density, abundance, dominance, species diversity index and equitability of the community. Analysis of variance (ANOVA-two way) was used to analyse the vertical and seasonal differences, and Canonical Correspondence Analysis (CCA) was used to assess associations between phytoplankton and environmental variables Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju was the only dominant species and Geitlerinema amphibium (C. Agardh) Anagnostidis, Merismopedia punctata Meyen and Synedra rumpens Kützing. Others six taxa were abundant in at least one of the samples. Distinct vertical distribution patterns were observed for the abundant taxa between depths and seasons. The cyanobacteria, with the exception of C. raciborskii, showed similar seasonal patterns, with higher densities in the dry season. The CCA showed a strong correlation between the density of the phytoplanktonic species and abiotic variables. The vertical changes in abundant taxa revealed distinct patterns regulated by the variation in the environmental factors that were directly linked to seasonality, with the success of one or more species being dependent on their life strategies and ecological needs. The present study restates the importance of environmental and seasonal factors for phytoplankton composition and distribution in a freshwater tropical reservoir through a vertical gradient.

Collaboration


Dive into the Micheline Kézia Cordeiro-Araújo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariadne do Nascimento Moura

Universidade Federal Rural de Pernambuco

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moura An

Federal University of Pernambuco

View shared research outputs
Researchain Logo
Decentralizing Knowledge