Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Micheline Resende is active.

Publication


Featured researches published by Micheline Resende.


Circulation Research | 2015

Bone Marrow Characteristics Associated With Changes in Infarct Size After STEMI A Biorepository Evaluation From the CCTRN TIME Trial

Robert C. Schutt; Barry Trachtenberg; John P. Cooke; Jay H. Traverse; Timothy D. Henry; Carl J. Pepine; James T. Willerson; Emerson C. Perin; Stephen G. Ellis; David Zhao; Aruni Bhatnagar; Brian H. Johnstone; Dejian Lai; Micheline Resende; Ray F. Ebert; Joseph C. Wu; Shelly L. Sayre; Aaron Orozco; Claudia Zierold; Robert D. Simari; Lem Moyé; Christopher R. Cogle; Doris A. Taylor

Rationale: Despite significant interest in bone marrow mononuclear cell (BMC) therapy for ischemic heart disease, current techniques have resulted in only modest benefits. However, selected patients have shown improvements after autologous BMC therapy, but the contributing factors are unclear. Objective: The purpose of this study was to identify BMC characteristics associated with a reduction in infarct size after ST-segment-elevation–myocardial infarction. Methods and Results: This prospective study comprised patients consecutively enrolled in the CCTRN TIME (Cardiovascular Cell Therapy Research Network Timing in Myocardial Infarction Evaluation) trial who agreed to have their BMCs stored and analyzed at the CCTRN Biorepository. Change in infarct size between baseline (3 days after percutaneous coronary intervention) and 6-month follow-up was measured by cardiac MRI. Infarct-size measurements and BMC phenotype and function data were obtained for 101 patients (mean age, 56.5 years; mean screening ejection fraction, 37%; mean baseline cardiac MRI ejection fraction, 45%). At 6 months, 75 patients (74.3%) showed a reduction in infarct size (mean change, −21.0±17.6%). Multiple regression analysis indicated that infarct size reduction was greater in patients who had a larger percentage of CD31+ BMCs ( P =0.046) and in those with faster BMC growth rates in colony-forming unit Hill and endothelial-colony forming cell functional assays ( P =0.033 and P =0.032, respectively). Conclusions: This study identified BMC characteristics associated with a better clinical outcome in patients with segment-elevation–myocardial infarction and highlighted the importance of endothelial precursor activity in regenerating infarcted myocardium. Furthermore, it suggests that for these patients with segment-elevation–myocardial infarction, myocardial repair was more dependent on baseline BMC characteristics than on whether the patient underwent intracoronary BMC transplantation. Clinical Trial Registration Information: URL: . Unique identifier: [NCT00684021][1]. # Novelty and Significance {#article-title-44} [1]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT00684021&atom=%2Fcircresaha%2F116%2F1%2F99.atomRationale: Despite significant interest in bone marrow mononuclear cell (BMC) therapy for ischemic heart disease, current techniques have resulted in only modest benefits. However, selected patients have shown improvements after autologous BMC therapy, but the contributing factors are unclear. Objective: The purpose of this study was to identify BMC characteristics associated with a reduction in infarct size after ST-segment-elevation–myocardial infarction. Methods and Results: This prospective study comprised patients consecutively enrolled in the CCTRN TIME (Cardiovascular Cell Therapy Research Network Timing in Myocardial Infarction Evaluation) trial who agreed to have their BMCs stored and analyzed at the CCTRN Biorepository. Change in infarct size between baseline (3 days after percutaneous coronary intervention) and 6-month follow-up was measured by cardiac MRI. Infarct-size measurements and BMC phenotype and function data were obtained for 101 patients (mean age, 56.5 years; mean screening ejection fraction, 37%; mean baseline cardiac MRI ejection fraction, 45%). At 6 months, 75 patients (74.3%) showed a reduction in infarct size (mean change, −21.0±17.6%). Multiple regression analysis indicated that infarct size reduction was greater in patients who had a larger percentage of CD31+ BMCs (P=0.046) and in those with faster BMC growth rates in colony-forming unit Hill and endothelial-colony forming cell functional assays (P=0.033 and P=0.032, respectively). Conclusions: This study identified BMC characteristics associated with a better clinical outcome in patients with segment-elevation–myocardial infarction and highlighted the importance of endothelial precursor activity in regenerating infarcted myocardium. Furthermore, it suggests that for these patients with segment-elevation–myocardial infarction, myocardial repair was more dependent on baseline BMC characteristics than on whether the patient underwent intracoronary BMC transplantation. Clinical Trial Registration Information: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00684021.


Journal of Cardiovascular Pharmacology | 2006

Combined effects of low-dose spironolactone and captopril therapy in a rat model of genetic hypertrophic cardiomyopathy.

Micheline Resende; Alison J. Kriegel; Andrew S. Greene

For several years, the severe side effects associated with the use of high doses of the aldosterone antagonist, spironolactone, limited its clinical use. Studies have recently shown efficacy and minimal side effects of low-dose spironolactone combined with standard therapy in the treatment of heart failure and hypertensive patients. The authors evaluated the effects of low-dose spironolactone alone or in combination with angiotensin-converting enzyme (ACE) inhibitors on the progression of left ventricular dysfunction and remodeling in a congenic rat model of hypertrophic cardiomyopathy. The congenic SS-16BN/Mcwi rats developed severe cardiac hypertrophy despite being normotensive even on high-salt diet. SS-16BN/Mcwi and SS/Mcwi rats were fed a low-salt (0.4% NaCl) diet and were treated with vehicle (CON), spironolactone (20 mg/kg/d subcutaneously), captopril (100 mg/kg/d drinking water), or both spironolactone and captopril for 4 weeks. Blood pressure, plasma peptides, cardiac fibrosis, and echocardiography measurements were evaluated. Spironolactone at a low dose had no effect on blood pressure, cardiac hypertrophy, and fibrosis in either strain. However, in combination with captopril, spironolactone decreased the cardiac hypertrophy more than captopril treatment alone. In the SS-16BN/Mcwi rats, the combined therapy significantly preserved the cardiac index when compared with control. These data indicate that the addition of low-dose spironolactone to captopril treatment was more effective in preventing the progression of heart hypertrophy and ventricular dysfunction in the SS-16BN/Mcwi than captopril alone. This study suggests that combined spironolactone and captopril therapy may be useful in the treatment of hypertrophic cardiomyopathy.


Physiological Genomics | 2010

Role of the renin angiotensin system on bone marrow-derived stem cell function and its impact on skeletal muscle angiogenesis

Micheline Resende; Timothy J. Stodola; Andrew S. Greene

Autologous bone marrow cell (BMC) transplantation has been shown as a potential approach to treat various ischemic diseases. However, under many conditions BMC dysfunction has been reported, leading to poor cell engraftment and a failure of tissue revascularization. We have previously shown that skeletal muscle angiogenesis induced by electrical stimulation (ES) is impaired in the SS/Mcwi rats and that this effect is related to a dysregulation of the renin angiotensin system (RAS) that is normalized by the replacement of chromosome 13 derived from the Brown Norway rat (SS-13(BN)/Mcwi consomic rats). The present study explored bone marrow-derived endothelial cell (BM-EC) function in the SS/Mcwi rat and its impact on skeletal muscle angiogenesis induced by ES. SS/Mcwi rats were randomized to receive BMC from: SS/Mcwi; SS-13(BN)/Mcwi; SS/Mcwi rats infused with saline or ANG II (3 ng kg(-1) min(-1)). BMC were injected in the stimulated tibialis anterior muscle of SS/Mcwi rats. Vessel density was evaluated in unstimulated and stimulated muscles after 7 days of ES. BMC isolated from SS/Mcwi or SS/Mcwi rats infused with saline failed to restore angiogenesis induced by ES. However, BMC isolated from SS-13(BN)/Mcwi and SS/Mcwi rats infused with ANG II effectively restored the angiogenesis response in the SS/Mcwi recipient. Furthermore, ANG II infusion increased the capacity of BM-EC to induce endothelial cell tube formation in vitro and slightly increased VEGF protein expression. This study suggests that dysregulation of the RAS in the SS/Mcwi rat contributes to impaired BM-EC function and could impact the angiogenic therapeutic potential of BMC.


Physiological Genomics | 2008

Congenic strains reveal the effect of the renin gene on skeletal muscle angiogenesis induced by electrical stimulation.

Micheline Resende; Sandra L. Amaral; Carol Moreno; Andrew S. Greene

Previous studies have indicated the importance of angiotensin II (ANG II) in skeletal muscle angiogenesis. The present study explored the effect of regulation of the renin gene on angiogenesis induced by electrical stimulation with the use of physiological, pharmacological, and genetic manipulations of the renin-angiotensin system (RAS). Transfer of the entire chromosome 13, containing the physiologically regulated renin gene, from the normotensive inbred Brown Norway (BN) rat into the background of an inbred substrain of the Dahl salt-sensitive (SS/Mcwi) rat restored renin levels and the angiogenic response after electrical stimulation. This restored response was significantly attenuated when SS-13(BN)/Mcwi consomic rats were treated with lisinopril or high-salt diet. The role of ANG II on this effect was confirmed by the complete restoration of skeletal muscle angiogenesis in SS/Mcwi rats infused with subpressor doses of ANG II. Congenic strains derived from the SS-13(BN)/Mcwi consomic were used to further verify the role of the renin gene in this response. Microvessel density was markedly increased after stimulation in congenic strains that contained the renin gene from the BN rat (congenic lines A and D). This angiogenic response was suppressed in control strains that carried regions of the BN genome just above (congenic line C) or just below (congenic line B) the renin gene. The present study emphasizes the importance of maintaining normal renin regulation as well as ANG II levels during the angiogenesis process with a combination of physiological, genetic, and pharmacological manipulation of the RAS.


Circulation | 2017

Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery Disease: The CCTRN PACE Trial (Patients with Intermittent Claudication Injected with ALDH Bright Cells)

Emerson C. Perin; Michael P. Murphy; Keith L. March; Roberto Bolli; John Loughran; Phillip C. Yang; Nicholas J. Leeper; Ronald L. Dalman; Jason Q. Alexander; Timothy D. Henry; Jay H. Traverse; Carl J. Pepine; R. David Anderson; Scott Berceli; James T. Willerson; Raja Muthupillai; Amir Gahremanpour; Ganesh Raveendran; Omaida Velasquez; Joshua M. Hare; Ivonne Hernandez Schulman; Vijaykumar S. Kasi; William R. Hiatt; Bharath Ambale-Venkatesh; Joao A.C. Lima; Doris A. Taylor; Micheline Resende; Adrian P. Gee; April G. Durett; Jeanette Bloom

Background: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute–sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow–derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. Methods: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. Results: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] −0.6 to 2.5; P=0.238), collateral count (0.9±0.6 arteries; 95% CI, −0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, −0.8 to 0.8; P=0.978), and capillary perfusion (−0.2±0.6%; 95% CI, −1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1–2.9; P=0.047) in participants with completely occluded femoral arteries. Conclusions: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01774097.Background: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute–sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow–derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. Methods: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. Results: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] −0.6 to 2.5; P =0.238), collateral count (0.9±0.6 arteries; 95% CI, −0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, −0.8 to 0.8; P =0.978), and capillary perfusion (−0.2±0.6%; 95% CI, −1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1–2.9; P =0.047) in participants with completely occluded femoral arteries. Conclusions: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. Clinical Trial Registration: URL: . Unique identifier: [NCT01774097][1]. # Clinical Perspective {#article-title-36} [1]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT01774097&atom=%2Fcirculationaha%2F135%2F15%2F1417.atom


Cell Transplantation | 2016

Identification of bone marrow cell subpopulations associated with improved functional outcomes in patients with chronic left ventricular dysfunction: An embedded cohort evaluation of the FOCUS-CCTRN trial

Doris A. Taylor; Emerson C. Perin; James T. Willerson; Claudia Zierold; Micheline Resende; Marjorie Carlson; Belinda Nestor; Elizabeth Wise; Aaron Orozco; Carl J. Pepine; Timothy D. Henry; Stephen G. Ellis; David Zhao; Jay H. Traverse; John P. Cooke; Robert C. Schutt; Aruni Bhatnagar; Maria B. Grant; Dejian Lai; Brian H. Johnstone; Shelly L. Sayre; Lem Moyé; Ray F. Ebert; Roberto Bolli; Robert D. Simari; Christopher R. Cogle

In the current study, we sought to identify bone marrow-derived mononuclear cell (BM-MNC) subpopulations associated with a combined improvement in left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and maximal oxygen consumption (VO2 max) in patients with chronic ischemic cardiomyopathy 6 months after receiving transendocardial injections of autologous BM-MNCs or placebo. For this prospectively planned analysis, we conducted an embedded cohort study comprising 78 patients from the FOCUS-Cardiovascular Cell Therapy Research Network (CCTRN) trial. Baseline BM-MNC immunophenotypes and progenitor cell activity were determined by flow cytometry and colony-forming assays, respectively. Previously stable patients who demonstrated improvement in LVEF, LVESV, and VO2 max during the 6-month course of the FOCUS-CCTRN study (group 1, n = 17) were compared to those who showed no change or worsened in one to three of these endpoints (group 2, n = 61) and to a subset of patients from group 2 who declined in all three functional endpoints (group 2A, n = 11). Group 1 had higher frequencies of B-cell and CXCR4+ BM-MNC subpopulations at study baseline than group 2 or 2A. Furthermore, patients in group 1 had fewer endothelial colony-forming cells and monocytes/macrophages in their bone marrow than those in group 2A. To our knowledge, this is the first study to show that in patients with ischemic cardiomyopathy, certain bone marrow-derived cell subsets are associated with improvement in LVEF, LVESV, and VO2 max at 6 months. These results suggest that the presence of both progenitor and immune cell populations in the bone marrow may influence the natural history of chronic ischemic cardiomyopathy—even in stable patients. Thus, it may be important to consider the bone marrow composition and associated regenerative capacity of patients when assigning them to treatment groups and evaluating the results of cell therapy trials.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Effect of ANG II on endothelial cell apoptosis and survival and its impact on skeletal muscle angiogenesis after electrical stimulation

Micheline Resende; Andrew S. Greene

We have previously shown that skeletal muscle angiogenesis induced by electrical stimulation is significantly attenuated when SS-13BN/Mcwi rats are fed a high-salt diet. This effect was associated with a large increase in endothelial cell (EC) apoptosis. We hypothesized that the low levels of ANG II during high-salt diet would increase EC apoptosis and consequently diminish the angiogenic response. To test this hypothesis, a series of in vitro and in vivo studies was performed. EC apoptosis and viability were evaluated after incubation with ANG II under serum-free conditions. After 24 h of incubation, ANG II increased EC viability and Bcl-2-to-Bax ratio along with a dose-dependent decrease in EC apoptosis. This effect was blocked by the ANG II type 1 receptor antagonist losartan. To confirm our in vitro results, ANG II (3 ng.kg(-1).min(-1)) was chronically infused in rats fed a high-salt diet (4% NaCl). ANG II decreased EC apoptosis and produced a significant increase (40%) in skeletal muscle angiogenesis after electrical stimulation. These in vivo results were in agreement with our in vitro results and demonstrate that the attenuation of ANG II levels during a high-salt diet may induce EC apoptosis and consequently block the angiogenic response induced by electrical stimulation. Furthermore, under normal conditions, ANG II increases EC viability and protects EC from apoptosis possibly by inactivation of the mitochondrial apoptotic pathway.


Physiological Genomics | 2011

Characterization of the genomic structure and function of regions influencing renin and angiogenesis in the SS rat

Timothy J. Stodola; Micheline Resende; Allison B. Sarkis; Daniela N. Didier; Howard J. Jacob; Norbert Huebner; Oliver Hummel; Kathrin Saar; Carol Moreno; Andrew S. Greene

Impaired regulation of renin in Dahl salt-sensitive rats (SS/JRHsdMcwi, SS) contributes to attenuated angiogenesis in this strain. This study examined angiogenic function and genomic structure of regions surrounding the renin gene using subcongenic strains of the SS and BN/NHsdMcwi (BN) rat to identify important genomic variations between SS and BN involved in angiogenesis. Three candidate regions on Chr 13 were studied: two congenic strains containing 0.89 and 2.62 Mb portions of BN Chr 13 that excluded the BN renin allele and a third strain that contained a 2.02 Mb overlapping region that included the BN renin allele. Angiogenesis induced by electrical stimulation of the tibialis anterior muscle was attenuated in the SS compared with the BN. Congenics carrying the SS renin allele had impaired angiogenesis, while strains carrying the BN renin allele had angiogenesis restored. The exception was a congenic including a region of BN genome 0.4 Mb distal to renin that restored both renin regulation and angiogenesis. This suggests that there is a distant regulatory element in the BN capable of restoring normal regulation of the SS renin allele. The importance of ANG II in the restored angiogenic response was demonstrated by blocking with losartan. Sequencing of the 4.05 Mb candidate region in SS and BN revealed a total of 8,850 SNPs and other sequence variants. An analysis of the genes and their variants in the region suggested a number of pathways that may explain the impaired regulation of renin and angiogenesis in the SS rat.


American Heart Journal | 2016

Bone marrow cell characteristics associated with patient profile and cardiac performance outcomes in the LateTIME-Cardiovascular Cell Therapy Research Network (CCTRN) trial.

Aruni Bhatnagar; Roberto Bolli; Brian H. Johnstone; Jay H. Traverse; Timothy D. Henry; Carl J. Pepine; James T. Willerson; Emerson C. Perin; Stephen G. Ellis; David Zhao; Phillip C. Yang; John P. Cooke; Robert C. Schutt; Barry Trachtenberg; Aaron Orozco; Micheline Resende; Ray F. Ebert; Shelly L. Sayre; Robert D. Simari; Lem Moyé; Christopher R. Cogle; Doris A. Taylor

BACKGROUND Although several preclinical studies have shown that bone marrow cell (BMC) transplantation promotes cardiac recovery after myocardial infarction, clinical trials with unfractionated bone marrow have shown variable improvements in cardiac function. METHODS To determine whether in a population of post-myocardial infarction patients, functional recovery after BM transplant is associated with specific BMC subpopulation, we examined the association between BMCs with left ventricular (LV) function in the LateTIME-CCTRN trial. RESULTS In this population, we found that older individuals had higher numbers of BM CD133(+) and CD3(+) cells. Bone marrow from individuals with high body mass index had lower CD45(dim)/CD11b(dim) levels, whereas those with hypertension and higher C-reactive protein levels had higher numbers of CD133(+) cells. Smoking was associated with higher levels of CD133(+)/CD34(+)/VEGFR2(+) cells and lower levels of CD3(+) cells. Adjusted multivariate analysis indicated that CD11b(dim) cells were negatively associated with changes in LV ejection fraction and wall motion in both the infarct and border zones. Change in LV ejection fraction was positively associated with CD133(+), CD34(+), and CD45(+)/CXCR4(dim) cells as well as faster BMC growth rates in endothelial colony forming assays. CONCLUSIONS In the LateTIME population, BM composition varied with patient characteristics and treatment. Irrespective of cell therapy, recovery of LV function was greater in patients with greater BM abundance of CD133(+) and CD34(+) cells and worse in those with higher levels of CD11b(dim) cells. Bone marrow phenotype might predict clinical response before BMC therapy and administration of selected BM constituents could potentially improve outcomes of other future clinical trials.


Circulation Research | 2017

Peripheral Blood Cytokine Levels After Acute Myocardial Infarction: IL-1β and IL-6 Related Impairment of Bone Marrow Function

Mahan Shahrivari; Elizabeth Wise; Micheline Resende; Jonathan J. Shuster; Jingnan Zhang; Roberto Bolli; John P. Cooke; Joshua M. Hare; Timothy D. Henry; Aisha Khan; Doris A. Taylor; Jay H. Traverse; Phillip C. Yang; Carl J. Pepine; Christopher R. Cogle

Rationale: Intracoronary infusion of bone marrow (BM) mononuclear cells after acute myocardial infarction (AMI) has led to limited improvement in left ventricular function. Although experimental AMI models have implicated cytokine-related impairment of progenitor cell function, this response has not been investigated in humans. Objective: To test the hypothesis that peripheral blood (PB) cytokines predict BM endothelial progenitor cell colony outgrowth and cardiac function after AMI. Methods and Results: BM and PB samples were collected from 87 participants 14 to 21 days after AMI and BM from healthy donors was used as a reference. Correlations between cytokine concentrations and cell phenotypes, cell functions, and post-AMI cardiac function were determined. PB interleukin-6 (IL-6) negatively correlated with endothelial colony–forming cell colony maximum in the BM of patients with AMI (estimate±SE, −0.13±0.05; P=0.007). BM from healthy individuals showed a dose-dependent decrease in endothelial colony–forming cell colony outgrowth in the presence of exogenous IL-1&bgr; or IL-6 (P<0.05). Blocking the IL-1R or IL-6R reversed cytokine impairment. In AMI study participants, the angiogenic cytokine platelet-derived growth factor BB glycoprotein correlated positively with BM-derived colony-forming unit-endothelial colony maximum (estimate±SE, 0.01±0.002; P<0.001), multipotent mesenchymal stromal cell colony maximum (estimate±SE, 0.01±0.002; P=0.002) in BM, and mesenchymal stromal cell colony maximum in PB (estimate±SE, 0.02±0.005; P<0.001). Conclusions: Two weeks after AMI, increased PB platelet-derived growth factor BB glycoprotein was associated with increased BM function, whereas increased IL-6 was associated with BM impairment. Validation studies confirmed inflammatory cytokine impairment of BM that could be reversed by blocking IL-1R or IL-6R. Together, these studies suggest that blocking IL-1 or IL-6 receptors may improve the regenerative capacity of BM cells after AMI. Clinical Trial Registrations: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00684060.

Collaboration


Dive into the Micheline Resende's collaboration.

Top Co-Authors

Avatar

Doris A. Taylor

The Texas Heart Institute

View shared research outputs
Top Co-Authors

Avatar

Timothy D. Henry

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay H. Traverse

Abbott Northwestern Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Cooke

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Roberto Bolli

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Orozco

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge