Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle A. Day is active.

Publication


Featured researches published by Michelle A. Day.


Journal of Environmental Management | 2014

Wildfire exposure and fuel management on western US national forests

Alan A. Ager; Michelle A. Day; Charles W. McHugh; Karen C. Short; Julie W. Gilbertson-Day; Mark A. Finney; David E. Calkin

Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes the current wildfire risk and exposure does not exist, making it difficult to identify national priorities and target specific areas for fuel management. To gain a broader understanding of wildfire exposure in the national forest system, we analyzed an array of simulated and empirical data on wildfire activity and fuel treatment investments on the 82 western US national forests. We first summarized recent fire data to examine variation among the Forests in ignition frequency and burned area in relation to investments in fuel reduction treatments. We then used simulation modeling to analyze fine-scale spatial variation in burn probability and intensity. We also estimated the probability of a mega-fire event on each of the Forests, and the transmission of fires ignited on national forests to the surrounding urban interface. The analysis showed a good correspondence between recent area burned and predictions from the simulation models. The modeling also illustrated the magnitude of the variation in both burn probability and intensity among and within Forests. Simulated burn probabilities in most instances were lower than historical, reflecting fire exclusion on many national forests. Simulated wildfire transmission from national forests to the urban interface was highly variable among the Forests. We discuss how the results of the study can be used to prioritize investments in hazardous fuel reduction within a comprehensive multi-scale risk management framework.


PLOS ONE | 2017

Network analysis of wildfire transmission and implications for risk governance

Alan A. Ager; Cody R. Evers; Michelle A. Day; Haiganoush K. Preisler; Ana M. G. Barros; Max Nielsen-Pincus

We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments.


Ecology and Society | 2017

Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA

Ana M. G. Barros; Alan A. Ager; Michelle A. Day; Haiganoush K. Preisler; Thomas A. Spies; Eric M. White; Robert J. Pabst; Keith A. Olsen; Emily Platt; John D. Bailey; John P. Bolte

We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and treatment type. We modeled forest succession using a state-and-transition approach and simulated wildfires based on the contemporary fire regime of the region. We tested for the presence of temporal trends and overall differences in burned area among four fuel management scenarios. Results showed that when the forest was managed to reduce fuels it burned less: over the course of 50 years there was up to a 40% reduction in area burned. However, simulation outputs did not reveal the expected temporal trend, i.e., area burned did not decrease progressively with time, nor did the absence of management lead to its increase. These results can be explained as the consequence of an existing wildfire deficit and vegetation succession paths that led to closed canopy, and heavy fuels forest types that are unlikely to burn under average fire weather. Fire (and management) remained relatively rare disturbances and, given our assumptions, were unable to alter long-term vegetation patterns and consequently unable to alter long-term wildfire dynamics. Doubling and tripling current management targets were effective in the near term but not sustainable through time because of a scarcity of stands eligible to treat according to the modeled management constraints. These results provide new insights into the long-term dynamics between fuel management programs and wildfire and demonstrate that treatment prioritization strategies have limited effect on fire activity if they are too narrowly focused on particular forest conditions.


Journal of Environmental Management | 2016

Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests

Alan A. Ager; Michelle A. Day; Kevin C. Vogler

We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results revealed that attainment of multiple restoration objectives was constrained due to the joint spatial patterns of ecological conditions and socioeconomic values. We also found that current restoration projects are substantially suboptimal, perhaps the result of compromises in the collaborative planning process used by federal planners, or operational constraints on forest management activities. The juxtaposition of ecological settings with human values generated sharp tradeoffs, especially with respect to community wildfire protection versus generating revenue to support restoration and fire protection activities. The analysis and methods can be leveraged by ongoing restoration programs in many ways including: 1) integrated prioritization of restoration activities at multiple scales on public and adjoining private lands, 2) identification and mapping of conflicts between ecological restoration and socioeconomic objectives, 3) measuring the efficiency of ongoing restoration projects compared to the optimal production possibility frontier, 4) consideration of fire transmission among public and private land parcels as a prioritization metric, and 5) finding socially optimal regions along the production frontier as part of collaborative restoration planning.


Ecology and Society | 2017

Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy

Alan A. Ager; Ana M. G. Barros; Haiganoush K. Preisler; Michelle A. Day; Thomas A. Spies; John D. Bailey; John P. Bolte

Wildland fire suppression practices in the western United States are being widely scrutinized by policymakers and scientists as costs escalate and large fires increasingly affect social and ecological values. One potential solution is to change current fire suppression tactics to intentionally increase the area burned under conditions when risks are acceptable to managers and fires can be used to achieve long-term restoration goals in fire adapted forests. We conducted experiments with the Envision landscape model to simulate increased levels of wildfire over a 50-year period on a 1.2 million ha landscape in the eastern Cascades of Oregon, USA. We hypothesized that at some level of burned area fuels would limit the growth of new fires, and fire effects on the composition and structure of forests would eventually reduce future fire intensity and severity. We found that doubling current rates of wildfire resulted in detectable feedbacks in area burned and fire intensity. Area burned in a given simulation year was reduced about 18% per unit area burned in the prior five years averaged across all scenarios. The reduction in area burned was accompanied by substantially lower fire severity, and vegetation shifted to open forest and grass-shrub conditions at the expense of old growth habitat. Negative fire feedbacks were slightly moderated by longer-term positive feedbacks, in which the effect of prior area burned diminished during the simulation. We discuss trade-offs between managing fuels with wildfire versus prescribed fire and mechanical fuel treatments from a social and policy standpoint. The study provides a useful modeling framework to consider the potential value of fire feedbacks as part of overall land management strategies to build fire resilient landscapes and reduce wildfire risk to communities in the western U.S. The results are also relevant to prior climate-wildfire studies that did not consider fire feedbacks in projections of future wildfire activity.


Science of The Total Environment | 2018

Optimizing prescribed fire allocation for managing fire risk in central Catalonia

Fermín J. Alcasena; Alan A. Ager; Michele Salis; Michelle A. Day; Cristina Vega-Garcia

We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere.


Data in Brief | 2018

Wildfire spread, hazard and exposure metric raster grids for central Catalonia

Fermín J. Alcasena; Alan A. Ager; Michele Salis; Michelle A. Day; Cristina Vega-Garcia

We provide 40 m resolution wildfire spread, hazard and exposure metric raster grids for the 0.13 million ha fire-prone Bages County in central Catalonia (northeastern Spain) corresponding to node influence grid (NIG), crown fraction burned (CFB) and fire transmission to residential houses (TR). Fire spread and behavior data (NIG, CFB and fire perimeters) were generated with fire simulation modeling considering wildfire season extreme fire weather conditions (97th percentile). Moreover, CFB was also generated for prescribed fire (Rx) mild weather conditions. The TR smoothed grid was obtained with a geospatial analysis considering large fire perimeters and individual residential structures located within the study area. We made these raster grids available to assist in the optimization of wildfire risk management plans within the study area and to help mitigate potential losses from catastrophic events.


Risk Analysis | 2018

Assessing Transboundary Wildfire Exposure in the Southwestern United States: Transboundary Wildfire Exposure in the Southwestern United States

Alan A. Ager; Palaiologos Palaiologou; Cody R. Evers; Michelle A. Day; Ana M. G. Barros

We assessed transboundary wildfire exposure among federal, state, and private lands and 447 communities in the state of Arizona, southwestern United States. The study quantified the relative magnitude of transboundary (incoming, outgoing) versus nontransboundary (i.e., self-burning) wildfire exposure based on land tenure or community of the simulated ignition and the resulting fire perimeter. We developed and described several new metrics to quantify and map transboundary exposure. We found that incoming transboundary fire accounted for 37% of the total area burned on large parcels of federal and state lands, whereas 63% of the area burned was burned by ignitions within the parcel. However, substantial parcel to parcel variation was observed for all land tenures for all metrics. We found that incoming transboundary fire accounted for 66% of the total area burned within communities versus 34% of the area burned by self-burning ignitions. Of the total area burned within communities, private lands contributed the largest proportion (36.7%), followed by national forests (19.5%), and state lands (15.4%). On average seven land tenures contributed wildfire to individual communities. Annual wildfire exposure to structures was highest for wildfires ignited on state and national forest land, followed by tribal, private, and BLM. We mapped community firesheds, that is, the area where ignitions can spawn fires that can burn into communities, and estimated that they covered 7.7 million ha, or 26% of the state of Arizona. Our methods address gaps in existing wildfire risk assessments, and their implementation can help reduce fragmentation in governance systems and inefficiencies in risk planning.


Forest Ecology and Management | 2014

Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA

Alan A. Ager; Michelle A. Day; Mark A. Finney; Ken Vance-Borland; Nicole M. Vaillant


Forests | 2015

Prioritization of Forest Restoration Projects: Tradeoffs between Wildfire Protection, Ecological Restoration and Economic Objectives

Kevin C. Vogler; Alan A. Ager; Michelle A. Day; Michael Jennings; John D. Bailey

Collaboration


Dive into the Michelle A. Day's collaboration.

Top Co-Authors

Avatar

Alan A. Ager

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas A. Spies

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Cody R. Evers

Portland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Becky K. Kerns

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge