Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle A. Erickson is active.

Publication


Featured researches published by Michelle A. Erickson.


Neurobiology of Disease | 2010

The blood-brain barrier and immune function and dysfunction.

William A. Banks; Michelle A. Erickson

The blood-brain barrier (BBB) is the monocellular interface that divides the peripheral circulation from direct contact with the central nervous system (CNS). This interface consists of several parallel barriers that include most notably the capillary bed of the CNS and the choroid plexus. These barriers at one level create the dichotomy between the circulating factors of the immune system and the components of the CNS only to regulate interactions between the immune and central nervous systems at other levels. The BBB is thus an integral part of the neuroimmune axis. Here, we will consider four aspects of BBB-neuroimmune interactions: BBB disruption as mediated by LPS and cytokines, cytokine transport across the BBB, immune cell trafficking, and effects of lipopolysaccharide (LPS) on various functions of the BBB.


Pharmacology & Therapeutics | 2012

Insulin in the brain: There and back again

William A. Banks; Joshua B. Owen; Michelle A. Erickson

Insulin performs unique functions within the CNS. Produced nearly exclusively by the pancreas, insulin crosses the blood-brain barrier (BBB) using a saturable transporter, affecting feeding and cognition through CNS mechanisms largely independent of glucose utilization. Whereas peripheral insulin acts primarily as a metabolic regulatory hormone, CNS insulin has an array of effects on brain that may more closely resemble the actions of the ancestral insulin molecule. Brain endothelial cells (BECs), the cells that form the vascular BBB and contain the transporter that translocates insulin from blood to brain, are themselves regulated by insulin. The insulin transporter is altered by physiological and pathological factors including hyperglycemia and the diabetic state. The latter can lead to BBB disruption. Pericytes, pluripotent cells in intimate contact with the BECs, protect the integrity of the BBB and its ability to transport insulin. Most of insulins known actions within the CNS are mediated through two canonical pathways, the phosphoinositide-3 kinase (PI3)/Akt and Ras/mitogen activated kinase (MAPK) cascades. Resistance to insulin action within the CNS, sometimes referred to as diabetes mellitus type III, is associated with peripheral insulin resistance, but it is possible that variable hormonal resistance syndromes exist so that resistance at one tissue bed may be independent of that at others. CNS insulin resistance is associated with Alzheimers disease, depression, and impaired baroreceptor gain in pregnancy. These aspects of CNS insulin action and the control of its entry by the BBB are likely only a small part of the story of insulin within the brain.


Journal of Cerebral Blood Flow and Metabolism | 2013

Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease.

Michelle A. Erickson; William A. Banks

The blood–brain barrier (BBB) plays critical roles in the maintenance of central nervous system (CNS) homeostasis. Dysfunction of the BBB occurs in a number of CNS diseases, including Alzheimers disease (AD). A prevailing hypothesis in the AD field is the amyloid cascade hypothesis that states that amyloid-β (Aβ) deposition in the CNS initiates a cascade of molecular events that cause neurodegeneration, leading to AD onset and progression. In this review, the participation of the BBB in the amyloid cascade and in other mechanisms of AD neurodegeneration will be discussed. We will specifically focus on three aspects of BBB dysfunction: disruption, perturbation of transporters, and secretion of neurotoxic substances by the BBB. We will also discuss the interaction of the BBB with components of the neurovascular unit in relation to AD and the potential contribution of AD risk factors to aspects of BBB dysfunction. From the results discussed herein, we conclude that BBB dysfunction contributes to AD through a number of mechanisms that could be initiated in the presence or absence of Aβ pathology.


Brain Behavior and Immunity | 2009

Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: A mechanism for inflammation in the progression of Alzheimer’s disease

Laura B. Jaeger; Shinya Dohgu; Rukhsana Sultana; Jessica L. Lynch; Joshua B. Owen; Michelle A. Erickson; Gul N. Shah; Tulin O. Price; Melissa A. Fleegal-DeMotta; D. Allan Butterfiled; William A. Banks

Alzheimers disease (AD) brains are characterized by accumulation of amyloid beta protein (Abeta) and neuroinflammation. Increased blood-to-brain influx and decreased brain-to-blood efflux across the blood-brain barrier (BBB) have been proposed as mechanisms for Abeta accumulation. Epidemiological studies suggest that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows the progression of AD. We hypothesized that inflammation alters BBB handling of Abeta. Mice treated with lipopolysaccharide (LPS) had increased brain influx and decreased brain efflux of Abeta, recapitulating the findings in AD. Neither influx nor efflux was mediated by LPS acting directly on BBB cells. Increased influx was mediated by a blood-borne factor, indomethacin-independent, blocked by the triglyceride triolein, and not related to expression of the blood-to-brain transporter of Abeta, RAGE. Serum levels of IL-6, IL-10, IL-13, and MCP-1 mirrored changes in Abeta influx. Decreased efflux was blocked by indomethacin and accompanied by decreased protein expression of the brain-to-blood transporter of Abeta, LRP-1. LPS paradoxically increased expression of neuronal LRP-1, a major source of Abeta. Thus, inflammation potentially increases brain levels of Abeta by three mechanisms: increased influx, decreased efflux, and increased neuronal production.


Brain Behavior and Immunity | 2011

Cytokine and Chemokine Responses in Serum and Brain After Single and Repeated Injections of Lipopolysaccharide: Multiplex Quantification with Path Analysis

Michelle A. Erickson; William A. Banks

Administration of the proinflammatory molecule lipopolysaccharide (LPS) alters transport rates for many peptides across the blood-brain barrier (BBB). We and others have previously shown that effects of LPS on BBB transport are highly dependent on the injection paradigm used, and timing of the study. Cytokine expression in both brain and serum compartments influences the BBB response to an inflammatory stimulus, and mediates changes in BBB transport. Here, we used multianalyte technology to simultaneously determine the responses of 13 cytokines and chemokines (G-CSF, GM-CSF, IL-1α, IL-1β, IL-6, IL-10, IL-13, IP-10, KC, MCP-1, MIP-1α, RANTES, and TNF-α) in brain and blood to single and repeated injections of LPS and path analysis to determine the major relations among these analytes. Major findings are: (1) in comparison to measurements taken from a time course after a single injection of LPS, the three injection regimen of LPS produced significantly higher levels in brain for G-CSF, IL-1α, IL-6, MCP-1, MIP-1α, and TNF and in serum for G-CSF, IL-6, and GM-CSF and (2) path analysis distinguished direct from indirect correlations between analyte pairs, with MCP-1, IL-6, G-CSF, and KC mediating relations among these cytokines both within and between serum and brain compartments. These results suggest that potentiation of cytokine levels in brain and serum compartments could play important roles in the regulation of BBB transport, and that our novel application of an established statistical method can be used to assess direct correlations within multiplexed datasets.


Neuroimmunomodulation | 2012

Neuroinflammation: A Common Pathway in CNS Diseases as Mediated at the Blood-Brain Barrier

Michelle A. Erickson; Kenji Dohi; William A. Banks

The blood-brain barrier (BBB) is not simply a physical barrier but a regulatory interface between the central nervous system (CNS) and immune system. The BBB both affects and is affected by the immune system and connects at many levels with the CNS, including the following: (1) the BBB transports cytokines and secretes various substances with neuroinflammatory properties; (2) transporters are altered in disease states including traumatic injury, Alzheimer’s disease and inflammatory processes; (3) cytokines and other immune secretions from the cells comprising the BBB are both constitutive and inducible; (4) immune cells are transported across the BBB by the highly regulated process termed diapedesis, which involves communication and interactions between the brain endothelial cells and the immune cells; (5) the neuroimmune system has various effects on the BBB, including modulation of important transport systems and in extreme pathological conditions even disruption of the BBB, and (6) the brain-to-blood efflux transporter P-glycoprotein is altered in inflammatory conditions, thus affecting drug delivery to the brain. In summary, the BBB is an interactive interface that regulates and defines many of the ways that the CNS and the immune system communicate with one another.


Journal of Neuroinflammation | 2015

Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit

William A. Banks; Alicia M. Gray; Michelle A. Erickson; Therese S. Salameh; Mamatha Damodarasamy; Nader Sheibani; James S. Meabon; Emily E. Wing; Yoichi Morofuji; David G. Cook; May J. Reed

BackgroundDisruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain.MethodsWe used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using 14C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to 14C-sucrose and radioactive albumin.ResultsIn comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with 14C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and 14C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes.ConclusionsThe BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is to be dependent on COX but not on oxidative stress. Based on in vivo and in vitro measures of neuroinflammation, it appears that astrocytes, microglia/macrophages, and pericytes play little role in the LPS-mediated disruption of the BBB.


Journal of Neuroinflammation | 2012

Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier

Michelle A. Erickson; Pehr E Hartvigson; Yoichi Morofuji; Joshua B. Owen; D. Allan Butterfield; William A. Banks

BackgroundDefects in the low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein (Pgp) clearance of amyloid beta (Aβ) from brain are thought to contribute to Alzheimer’s disease (AD). We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS) results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood–brain barrier.MethodsCD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV)) or into the jugular vein (intravenous (IV)) was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF). Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine.ResultsWe found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain endothelial cells.ConclusionsThese results suggest that LRP-1 undergoes complex functional regulation following systemic inflammation which may depend on cell type, subcellular location, and post-translational modifications. Our findings that systemic inflammation causes deficits in both Aβ transport and bulk flow like those observed in AD indicate that inflammation could induce and promote the disease.


Free Radical Biology and Medicine | 2010

Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: Implications for Aβ accumulation in AD brain

Joshua B. Owen; Rukhsana Sultana; Christopher D. Aluise; Michelle A. Erickson; Tulin O. Price; Guojun Bu; William A. Banks; D. Allan Butterfield

Alzheimer disease (AD) is a neurodegenerative disorder characterized histopathologically by the presence of senile plaques (SPs), neurofibrillary tangles, and synapse loss. The main component of SPs is amyloid-β peptide (Aβ), which has been associated with increased oxidative stress, leading to oxidative modification of proteins and consequently to neurotoxicity and neurodegeneration. Low-density lipoprotein receptor-related protein 1 (LRP1) is the primary moiety responsible for the efflux of Aβ from the brain to the blood across the blood-brain barrier. Impaired brain-to-blood transport of Aβ by LRP1 has been hypothesized to contribute to increased levels of Aβ in AD brain. The cause of LRP1 dysfunction is unknown, but we have hypothesized that Aβ oxidizes LRP1, thus damaging its own transporter. Consistent with this notion, we report in this study a significant increase in the levels of the lipid peroxidation product 4-hydroxy-2-nonenal bound to transmembrane LRP1 in AD hippocampus. In contrast, the levels of LRP1-resident 3-nitrotyrosine did not show a significant increase in AD hippocampus compared to age-matched controls. Based on this study, we propose that Aβ impairs its own efflux from the brain by oxidation of its transporter LRP1, leading to increased Aβ deposition in brain, thereby contributing to subsequent cognitive impairment in AD.


Brain Behavior and Immunity | 2012

Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood–brain barrier: Protection by the antioxidant N-acetylcysteine

Michelle A. Erickson; Kim M. Hansen; William A. Banks

Impairment in two blood-brain barrier (BBB) efflux transporters, p-glycoprotein (Pgp) and low-density lipoprotein receptor-related protein-1 (LRP-1) are thought to contribute to the progression of Alzheimers disease (AD) by resulting in the brain accumulation of their substrate amyloid beta peptide (Aβ). The initial cause of impaired efflux, however, is unknown. We have shown that induction of systemic inflammation by intraperitoneal administration of lipopolysaccharide impairs the efflux of Aβ from the brain, suggesting that systemic inflammation could be one such initiator. In this study, we determined whether pre-administration of the antioxidant N-aceytlcysteine (Nac) has a protective effect against LPS-induced Aβ transporter dysfunction. Our findings were that Nac protected against LPS-induced Aβ transport dysfunction at the BBB through an LRP-1-dependent and Pgp-independent mechanism. This was associated with Nac exerting antioxidant effects in the periphery but not the brain, despite an increased rate of entry of Nac into the brain following LPS. We also found that Nac pre-administration resulted in lower blood levels of the cytokines and chemokines interferon-γ, interleukin-10, CCL2, CCL4, and CCL5, but only lowered CCL4 in the cerebral cortex and hippocampus. Finally, we observed that hippocampal cytokine responses to LPS were decreased compared to cortex. These findings demonstrate a novel mechanism by which antioxidants prevent Aβ accumulation in the brain caused by inflammation, and therefore protect against AD.

Collaboration


Dive into the Michelle A. Erickson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge