Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle A. Lawson is active.

Publication


Featured researches published by Michelle A. Lawson.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts

J. H. Duncan Bassett; A. Boyde; Peter Howell; Richard H. Bassett; Tm Galliford; Marta Archanco; Holly Evans; Michelle A. Lawson; Peter I. Croucher; Donald L. St. Germain; Valerie Anne Galton; Graham R. Williams

Hypothyroidism and thyrotoxicosis are each associated with an increased risk of fracture. Although thyroxine (T4) is the predominant circulating thyroid hormone, target cell responses are determined by local intracellular availability of the active hormone 3,5,3′-L-triiodothyronine (T3), which is generated from T4 by the type 2 deiodinase enzyme (D2). To investigate the role of locally produced T3 in bone, we characterized mice deficient in D2 (D2KO) in which the serum T3 level is normal. Bones from adult D2KO mice have reduced toughness and are brittle, displaying an increased susceptibility to fracture. This phenotype is characterized by a 50% reduction in bone formation and a generalized increase in skeletal mineralization resulting from a local deficiency of T3 in osteoblasts. These data reveal an essential role for D2 in osteoblasts in the optimization of bone strength and mineralization.


Cancer Research | 2007

Inhibition of p38α Mitogen-Activated Protein Kinase Prevents the Development of Osteolytic Bone Disease, Reduces Tumor Burden, and Increases Survival in Murine Models of Multiple Myeloma

Karin Vanderkerken; Satya Medicherla; Les Coulton; Hendrik De Raeve; Angelo Willems; Michelle A. Lawson; Ben Van Camp; Andrew A. Protter; Linda S. Higgins; Eline Menu; Peter I. Croucher

The bone microenvironment plays a critical role in supporting the growth and survival of multiple myeloma as well as in the development of osteolytic bone disease. Signaling through p38alpha mitogen-activated protein kinase (MAPK) mediates synthesis of multiple myeloma cell growth factors, and its inhibition reduces proliferation in vitro. However, it is unclear whether targeting p38alpha MAPK prevents multiple myeloma growth and the development of bone disease in vivo. In this study, we determined whether SCIO-469, a selective p38alpha MAPK inhibitor, inhibits multiple myeloma growth and prevents bone disease in the 5T2MM and 5T33MM models. SCIO-469 decreased constitutive p38alpha MAPK phosphorylation of both 5T2MM and 5T33MM cells in vitro. This was associated with decreased DNA synthesis and an induction of apoptosis when the cells were cultured with bone marrow stromal cells. Treatment of C57Bl/KaLwRij mice bearing 5T33MM cells with SCIO-469 inhibited p38alpha MAPK phosphorylation and was associated with a significant decrease in serum paraprotein, an almost complete reduction in tumor cells in the bone marrow, a decrease in angiogenesis, and a significant increase in disease-free survival. Injection of 5T2MM murine myeloma cells into C57Bl/KaLwRij mice resulted in myeloma bone disease characterized by increased osteoclast occupation of the bone surface, reduced cancellous bone, and the development of osteolytic bone lesions. Treatment of 5T2MM-injected mice with SCIO-469 reduced this development of bone disease. Together, these data show that targeting p38alpha MAPK with SCIO-469 decreases myeloma burden in vivo, in addition to preventing the development of myeloma bone disease.


British Medical Bulletin | 2014

Myeloma bone disease: pathogenesis, current treatments and future targets

Rebecca E. Walker; Michelle A. Lawson; Clive Buckle; John A. Snowden; Andrew D. Chantry

INTRODUCTION Patients with myeloma develop localized and generalized bone loss leading to hypercalcaemia, accelerated osteoporosis, vertebral wedge fractures, other pathological fractures, spinal cord compression and bone pain. Bone loss is mediated by a variety of biological modifiers including osteoclast-activating factors (OAF) and osteoblast (OB) inhibitory factors produced either directly by malignant plasma cells (MPCs) or as a consequence of their interaction with the bone marrow microenvironment (BMM). Raised levels of OAFs such as receptor activator of nuclear factor-kappa B ligand (RANKL), macrophage inflammatory protein 1 alpha, tumour necrosis factor-alpha and interleukin 6 stimulate bone resorption by recruiting additional osteoclasts. Via opposing mechanisms, increases in OB inhibitory factors, such as dickkopf-1 (Dkk-1), soluble frizzled-related protein-3 and hepatocyte growth factor (HGF), suppress bone formation by inhibiting the differentiation and recruitment of OBs. These changes result in an uncoupling of physiological bone remodelling, leading to myeloma bone disease (MBD). Moreover, the altered BMM provides a fertile ground for the growth and survival of MPCs. Current clinical management of MBD is both reactive (to pain and fractures) and preventive, with bisphosphonates (BPs) being the mainstay of pharmacological treatment. However, side effects and uncertainties associated with BPs warrant the search for more targeted treatments for MBD. This review will summarize recent developments in understanding the intimate relationship between MBD and the BMM and the novel ways in which they are being therapeutically targeted. SOURCES OF DATA All data included were sourced and referenced from PubMed. AREAS OF AGREEMENT The clinical utility of BP therapy is well established. However, there is general acknowledgement that BPs are only partially successful in the treatment of MBD. The number of skeletal events attributable to myeloma are reduced by BPs but not totally eliminated. Furthermore, existing damage is not repaired. It is widely recognized that more effective treatments are needed. AREAS OF CONTROVERSY There remains controversy concerning the duration of BP therapy. Whether denosumab is a viable alternative to BP therapy is also contested. Many of the new therapeutic strategies discussed are yet to translate to clinical practice and demonstrate equal efficacy or superiority to BP therapy. It also remains controversial whether reported anti-tumour effects of bone-modulating therapies are clinically significant. GROWING POINTS The potential clinical utility of bone anabolic therapies including agents such as anti-Dkk-1, anti-sclerostin and anti-HGF is becoming increasingly recognized. AREAS TIMELY FOR DEVELOPING RESEARCH Further research effectively targeting the mediators of MBD, targeting both bone resorption and bone formation, is urgently needed. This should translate promptly to clinical trials of combination therapy comprising anti-resorptives and bone anabolic therapies to demonstrate efficacy and improved outcomes over BPs.


Biochemical and Biophysical Research Communications | 2008

Geranylgeranyl transferase type II inhibition prevents myeloma bone disease

Michelle A. Lawson; Les Coulton; Frank H. Ebetino; Karin Vanderkerken; Peter I. Croucher

Geranylgeranyl transferase II (GGTase II) is an enzyme that plays a key role in the isoprenylation of proteins. 3-PEHPC, a novel GGTase II inhibitor, blocks bone resorption and induces myeloma cell apoptosis in vitro. Its effect on bone resorption and tumor growth in vivo is unknown. We investigated the effect of 3-PEHPC on tumor burden and bone disease in the 5T2MM model of multiple myeloma in vivo. 3-PEHPC significantly reduced osteoclast numbers and osteoclast surface. 3-PEHPC prevented the bone loss and the development of osteolytic bone lesions induced by 5T2MM myeloma cells. Treatment with 3-PEHPC also significantly reduced myeloma burden in bone. The magnitude of response was similar to that seen with the bisphosphonate, risedronate. These data show that targeting GGTase II with 3-PEHPC can prevent osteolytic bone disease and reduce tumor burden in vivo, and represents a novel approach to treating tumors that grow in bone.


PLOS ONE | 2012

Soluble Rank Ligand Produced by Myeloma Cells Causes Generalised Bone Loss in Multiple Myeloma

Clive Buckle; Evy De Leenheer; Michelle A. Lawson; Kwee Yong; Neil Rabin; Mark Perry; Karen Vanderkerken; Peter I. Croucher

Patients with multiple myeloma commonly develop focal osteolytic bone disease, as well as generalised osteoporosis. The mechanisms underlying the development of osteoporosis in patients with myeloma are poorly understood. Although disruption of the RANKL/OPG pathway has been shown to underlie formation of focal osteolytic lesions, its role in the development of osteoporosis in myeloma remains unclear. Increased soluble RANKL in serum from patients with myeloma raises the possibility that this molecule plays a key role. The aim of the present study was to establish whether sRANKL produced by myeloma cells contributes directly to osteoporosis. C57BL/KaLwRij mice were injected with either 5T2MM or 5T33MM murine myeloma cells. 5T2MM-bearing mice developed osteolytic bone lesions (p<0.05) with increased osteoclast surface (p<0.01) and reduced trabecular bone volume (p<0.05). Bone volume was also reduced at sites where 5T2MM cells were not present (p<0.05). In 5T2MM-bearing mice soluble mRANKL was increased (p<0.05), whereas OPG was not altered. In contrast, 5T33MM-bearing mice had no changes in osteoclast surface or trabecular bone volume and did not develop osteolytic lesions. Soluble mRANKL was undetectable in serum from 5T33MM-bearing mice. In separate experiments, RPMI-8226 human myeloma cells were transduced with an human RANKL/eGFP construct, or eGFP alone. RPMI-8226/hRANKL/eGFP cells, but not RPMI-8226/eGFP cells, stimulated osteoclastic bone resorption (p<0.05) in vitro. Sub-cutaneous injection of NOD/SCID mice with RPMI-8226/hRANKL/eGFP or RPMI-8226/eGFP cells resulted in tumour development in all mice. RPMI-8226/hRANKL/eGFP-bearing mice exhibited increased serum soluble hRANKL (p<0.05) and a three-fold increase in osteoclast number (p<0.05) compared to RPMI-8226/eGFP-bearing mice. This was associated with reduced trabecular bone volume (27%, p<0.05), decreased trabecular number (29%, p<0.05) and increased trabecular thickness (8%, p<0.05). Our findings demonstrate that soluble RANKL produced by myeloma cells causes generalised bone loss, suggesting that targeting RANKL may prevent osteoporosis in patients with myeloma.


The FASEB Journal | 2015

Mitotic quiescence, but not unique “stemness,” marks the phenotype of bone metastasis-initiating cells in prostate cancer

Ning Wang; Freyja Docherty; Hannah K. Brown; Kim J. Reeves; A Fowles; Michelle A. Lawson; Penelope D. Ottewell; Ingunn Holen; Peter I. Croucher; Colby L. Eaton

This study aimed to identify subpopulations of prostate cancer cells that are responsible for the initiation of bone metastases. Using rapidly dividing human prostate cancer cell lines, we identified mitotically quiescent subpopulations (<1%), which we compared with the rapidly dividing populations for patterns of gene expression and for their ability to migrate to the skeletons of athymic mice. The study used 2‐photon microscopy to map the presence/distribution of fluorescently labeled, quiescent cells and luciferase expression to determine the presence of growing bone metastases. We showed that the mitotically quiescent cells were very significantly more tumorigenic in forming bone metastases than fast‐growing cells (55 vs. 15%) and had a unique gene expression profile. The quiescent cells were not uniquely stem cell like, with no expression of CD133 but had the same level expression of other putative prostate stem cell markers (CD44 and integrins α2/β1), when compared to the rapidly proliferating population. In addition, mitotic quiescence was associated with very high levels of C‐X‐C chemokine receptor type 4 (CXCR4) production. Inhibition of CXCR4 activity altered the homing of quiescent tumor cells to bone. Our studies suggest that mitotic dormancy is a unique phenotype that facilitates tumor cell colonization of the skeleton in prostate cancer.—Wang, N., Docherty, F., Brown, H. K., Reeves, K., Fowles, A., Lawson, M., Ottewell, P. D., Holen, I., Croucher, P. I., Eaton, C. L. Mitotic quiescence, but not unique “stemness,” marks the phenotype of bone metastasis‐initiating cells in prostate cancer. FASEB J. 29, 3141‐3150 (2015). www.fasebj.org


Current Pharmaceutical Design | 2010

Targeting RANK/RANKL in the Treatment of Solid Tumours and Myeloma

Clive Buckle; Helen L. Neville-Webbe; Peter I. Croucher; Michelle A. Lawson

Cancers which damage the human skeleton include multiple myeloma, where the primary tumour colonises bone directly, or breast and prostate cancer, where malignant cells travel from the primary tumour to form clonal outgrowths within the bone. Owing to the interaction of tumour cells with those normally found in the bone microenvironment, such as osteoclasts and osteoblasts, these cancers affect the closely linked processes of bone formation and resorption. As a result, these twin processes contribute to the clinical manifestations of cancer metastasis, including bone pain and pathological fractures. A critical component of physiologically normal bone remodelling, the RANK/RANKL/OPG pathway, has been implicated in the formation of osteolytic, and possibly osteoblastic, lesions, which characterise the bone disease associated with these malignancies. In these cancers that affect the skeleton in this way the abnormally regulated RANK/RANKL system appears to be the final effector pathway. As a result, there has been much research focused upon targeting these molecules using OPG constructs, peptidomimetics, soluble receptor constructs and antibodies to RANKL, in pre-clinical studies. The success of these studies has paved the way for a clinical programme, the success of which is likely to lead to a new therapeutic approach to treating cancers that develop in the skeleton.


PLOS ONE | 2012

Targeting Tumour-Initiating Cells with TRAIL Based Combination Therapy Ensures Complete and Lasting Eradication of Multiple Myeloma Tumours In Vivo

Srdjan Vitovski; Andrew D. Chantry; Michelle A. Lawson; Peter I. Croucher

Multiple myeloma (MM) remains an incurable disease despite improvements to available treatments and efforts to identify new drug targets. Consequently new approaches are urgently required. We have investigated the potential of native tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), in combination with doxorubicin, to induce apoptotic cell death in phenotypically distinct populations of myeloma cells in vitro and in vivo. The cytotoxic potential of TRAIL alone, and in combination with DOX, was assessed in vitro in purified CD138+ and CD138− cells from the MM cell lines and samples from patients with MM. Mouse xenografts obtained by implanting CD138− MM cells were used to assess the efficacy of TRAIL, alone and in combination with DOX, in vivo. CD138− cells were shown to be more resistant to the cytotoxic activity of TRAIL than CD138+ cells and have reduced expression of TRAIL death receptors. This resistance results in preferential killing of CD 138+ cells during exposure of MM culture to TRAIL. Furthermore, prolonged exposure results in the appearance of TRAIL-resistant CD138− cells. However, when TRAIL is combined with doxorubicin, this results in complete eradication of MM cells in vivo. Most importantly, this treatment successfully eliminates CD138− cells implicated in tumour initiation and growth maintenance. These findings may explain the failure of current therapies and offer a promising new approach in the quest to cure MM and disseminated cancers.


Bone | 2015

A review of current murine models of multiple myeloma used to assess the efficacy of therapeutic agents on tumour growth and bone disease.

Julia Paton-Hough; Andrew D. Chantry; Michelle A. Lawson

Pre-clinical in vivo models of multiple myeloma are essential tools for investigating the pathophysiology of multiple myeloma and for testing new therapeutic agents and strategies prior to their potential use in clinical trials. Over the last five decades, several different types of murine models of multiple myeloma have been developed ranging from immunocompetent syngeneic models, e.g. the 5 T series of myeloma cells, to immunocompromised models including the SCID xenograft models, which use human myeloma cell lines or patient-derived cells. Other models include hybrid models featuring the implantation of SCID mice with bone chips (SCID-hu or SCID-rab) or 3-D bone scaffolds (SCID-synth-hu), and mice that have been genetically engineered to develop myeloma. Bearing in mind the differences in these models, it is not surprising that they reflect to varying degrees different aspects of myeloma. Here we review the past and present murine models of myeloma, with particular emphasis on their advantages and limitations, characteristics, and their use in testing therapeutic agents to treat myeloma tumour burden and bone disease.


PLOS ONE | 2015

NOD/SCID-GAMMA Mice Are an Ideal Strain to Assess the Efficacy of Therapeutic Agents Used in the Treatment of Myeloma Bone Disease

Michelle A. Lawson; Julia Paton-Hough; Holly Evans; Rebecca E. Walker; William Harris; Dharshi Ratnabalan; John A. Snowden; Andrew D. Chantry

Animal models of multiple myeloma vary in terms of consistency of onset, degree of tumour burden and degree of myeloma bone disease. Here we describe five pre-clinical models of myeloma in NOD/SCID-GAMMA mice to specifically study the effects of therapeutic agents on myeloma bone disease. Groups of 7–8 week old female irradiated NOD/SCID-GAMMA mice were injected intravenously via the tail vein with either 1x106 JJN3, U266, XG-1 or OPM-2 human myeloma cell lines or patient-derived myeloma cells. At the first signs of morbidity in each tumour group all animals were sacrificed. Tumour load was measured by histological analysis, and bone disease was assessed by micro-CT and standard histomorphometric methods. Mice injected with JJN3, U266 or OPM-2 cells showed high tumour bone marrow infiltration of the long bones with low variability, resulting in osteolytic lesions. In contrast, mice injected with XG-1 or patient-derived myeloma cells showed lower tumour bone marrow infiltration and less bone disease with high variability. Injection of JJN3 cells into NOD/SCID-GAMMA mice resulted in an aggressive, short-term model of myeloma with mice exhibiting signs of morbidity 3 weeks later. Treating these mice with zoledronic acid at the time of tumour cell injection or once tumour was established prevented JJN3-induced bone disease but did not reduce tumour burden, whereas, carfilzomib treatment given once tumour was established significantly reduced tumour burden. Injection of U266, XG-1, OPM-2 and patient-derived myeloma cells resulted in less aggressive longer-term models of myeloma with mice exhibiting signs of morbidity 8 weeks later. Treating U266-induced disease with zoledronic acid prevented the formation of osteolytic lesions and trabecular bone loss as well as reducing tumour burden whereas, carfilzomib treatment only reduced tumour burden. In summary, JJN3, U266 or OPM-2 cells injected into NOD/SCID-GAMMA mice provide robust models to study anti-myeloma therapies, particularly those targeting myeloma bone disease.

Collaboration


Dive into the Michelle A. Lawson's collaboration.

Top Co-Authors

Avatar

Peter I. Croucher

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clive Buckle

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar

Holly Evans

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar

Jenny Down

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Snowden

Royal Hallamshire Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren Lath

University of Sheffield

View shared research outputs
Researchain Logo
Decentralizing Knowledge