Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle A. O'Malley is active.

Publication


Featured researches published by Michelle A. O'Malley.


Nature Chemistry | 2017

Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization

Jia Niu; David J. Lunn; Anusha Pusuluri; Justin I. Yoo; Michelle A. O'Malley; Samir Mitragotri; H. Tom Soh; Craig J. Hawker

The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn < 1.3) could be obtained at room temperature in 5 minutes. This polymerization strategy enables chain growth to be initiated directly from chain-transfer agents anchored on the surface of live cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes. A cytocompatible controlled radical polymerization method has now been developed that initiates polymer synthesis directly on the surface of living cells. This method achieves significantly enhanced polymer grafting and enables active manipulation of cellular phenotypes.


Biotechnology and Bioengineering | 2014

Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production

Charles H. Haitjema; Kevin V. Solomon; John K. Henske; Michael K. Theodorou; Michelle A. O'Malley

Anaerobic gut fungi are an early branching family of fungi that are commonly found in the digestive tract of ruminants and monogastric herbivores. It is becoming increasingly clear that they are the primary colonizers of ingested plant biomass, and that they significantly contribute to the decomposition of plant biomass into fermentable sugars. As such, anaerobic fungi harbor a rich reservoir of undiscovered cellulolytic enzymes and enzyme complexes that can potentially transform the conversion of lignocellulose into bioenergy products. Despite their unique evolutionary history and cellulolytic activity, few species have been isolated and studied in great detail. As a result, their life cycle, cellular physiology, genetics, and cellulolytic metabolism remain poorly understood compared to aerobic fungi. To help address this limitation, this review briefly summarizes the current body of knowledge pertaining to anaerobic fungal biology, and describes progress made in the isolation, cultivation, molecular characterization, and long‐term preservation of these microbes. We also discuss recent cellulase‐ and cellulosome‐discovery efforts from gut fungi, and how these interesting, non‐model microbes could be further adapted for biotechnology applications. Biotechnol. Bioeng. 2014;111: 1471–1482.


Nature Genetics | 2017

Widespread adenine N6-methylation of active genes in fungi

Stephen J. Mondo; Richard O Dannebaum; Rita C. Kuo; Katherine B Louie; Adam J. Bewick; Kurt LaButti; Sajeet Haridas; Alan Kuo; Asaf Salamov; Steven Ahrendt; Rebecca Lau; Benjamin P. Bowen; Anna Lipzen; William Sullivan; Bill Andreopoulos; Alicia Clum; Erika Lindquist; Christopher Daum; Trent R. Northen; Govindarajan Kunde-Ramamoorthy; Robert J. Schmitz; Andrii P. Gryganskyi; David E. Culley; Jon K. Magnuson; Timothy Y. James; Michelle A. O'Malley; Jason E. Stajich; Joseph W. Spatafora; Axel Visel; Igor V. Grigoriev

N6-methyldeoxyadenine (6mA) is a noncanonical DNA base modification present at low levels in plant and animal genomes, but its prevalence and association with genome function in other eukaryotic lineages remains poorly understood. Here we report that abundant 6mA is associated with transcriptionally active genes in early-diverging fungal lineages. Using single-molecule long-read sequencing of 16 diverse fungal genomes, we observed that up to 2.8% of all adenines were methylated in early-diverging fungi, far exceeding levels observed in other eukaryotes and more derived fungi. 6mA occurred symmetrically at ApT dinucleotides and was concentrated in dense methylated adenine clusters surrounding the transcriptional start sites of expressed genes; its distribution was inversely correlated with that of 5-methylcytosine. Our results show a striking contrast in the genomic distributions of 6mA and 5-methylcytosine and reinforce a distinct role for 6mA as a gene-expression-associated epigenomic mark in eukaryotes.


Nature microbiology | 2017

A parts list for fungal cellulosomes revealed by comparative genomics

Charles H. Haitjema; Sean P. Gilmore; John K. Henske; Kevin V. Solomon; Randall de Groot; Alan Kuo; Stephen J. Mondo; Asaf Salamov; Kurt LaButti; Zhiying Zhao; Jennifer Chiniquy; Kerrie Barry; Heather M. Brewer; Samuel O. Purvine; Aaron T. Wright; Matthieu Hainaut; Brigitte Boxma; Theo van Alen; Johannes H. P. Hackstein; Bernard Henrissat; Scott E. Baker; Igor V. Grigoriev; Michelle A. O'Malley

Cellulosomes are large, multiprotein complexes that tether plant biomass-degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria, where species-specific dockerin domains mediate the assembly of enzymes onto cohesin motifs interspersed within protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin–dockerin interaction is now a standard design principle for synthetic biology2,3. For decades, analogous structures have been reported in anaerobic fungi, which are known to assemble by sequence-divergent non-catalytic dockerin domains (NCDDs)4. However, the components, modular assembly mechanism and functional role of fungal cellulosomes remain unknown5,6. Here, we describe a comprehensive set of proteins critical to fungal cellulosome assembly, including conserved scaffolding proteins unique to the Neocallimastigomycota. High-quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single-molecule technology. Genomic analysis coupled with proteomic validation revealed an average of 312 NCDD-containing proteins per fungal strain, which were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across four genera that bind to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. However, the biocatalytic activity of anaerobic fungal cellulosomes is expanded by the inclusion of GH3, GH6 and GH45 enzymes. These findings suggest that the fungal cellulosome is an evolutionarily chimaeric structure—an independently evolved fungal complex that co-opted useful activities from bacterial neighbours within the gut microbiome.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2015

Structure and function of G protein-coupled receptor oligomers: implications for drug discovery

Nicole S. Schonenbach; Sunyia Hussain; Michelle A. O'Malley

G protein-coupled receptor (GPCR) oligomers are promising targets for the design of new highly selective therapeutics. GPCRs have historically been attractive drug targets for their role in nearly all cellular processes, and their localization at the cell surface makes them easily accessible to most small molecule therapeutics. However, GPCRs have traditionally been considered a monomeric entity, a notion that greatly oversimplifies their function. As evidence accumulates that GPCRs tune function through oligomer formation and protein-protein interactions, we see a greater demand for structural information about these oligomers to facilitate oligomer-specific drug design. These efforts are slowed by difficulties inherent to studying membrane proteins, such as low expression yield, in vitro stability and activity. Such obstacles are amplified for the study of specific oligomers, as there are limited tools to directly isolate and characterize these receptor complexes. Thus, there is a need to develop new interdisciplinary approaches, combining biochemical and biophysical techniques, to address these challenges and elucidate structural details about the oligomer and ligand binding interfaces. In this review, we provide an overview of mechanistic models that have been proposed to underlie the function of GPCR oligomers, and perspectives on emerging techniques to characterize GPCR oligomers for structure-based drug design.


ACS Chemical Biology | 2016

Intracellular FRET-based Screen for Redesigning the Specificity of Secreted Proteases

Jennifer L. Guerrero; Michelle A. O'Malley; Patrick S. Daugherty

Proteases are attractive as therapeutics given their ability to catalytically activate or inactivate their targets. However, therapeutic use of proteases is limited by insufficient substrate specificity, since off-target activity can induce undesired side-effects. In addition, few methods exist to enhance the activity and specificity of human proteases, analogous to methods for antibody engineering. Given this need, a general methodology termed protease evolution via cleavage of an intracellular substrate (PrECISE) was developed to enable engineering of human protease activity and specificity toward an arbitrary peptide target. PrECISE relies on coexpression of a protease and a peptide substrate exhibiting Förster resonance energy transfer (FRET) within the endoplasmic reticulum of yeast. Use of the FRET reporter substrate enabled screening large protease libraries using fluorescence activated cell sorting for the activity of interest. To evolve a human protease that selectively cleaves within the central hydrophobic core (KLVF↓F↓AED) of the amyloid beta (Aβ) peptide, PrECISE was applied to human kallikrein 7, a protease with Aβ cleavage activity but broad selectivity, with a strong preference for tyrosine (Y) at P1. This method yielded a protease variant which displayed up to 30-fold improvements in Aβ selectivity mediated by a reduction in activity toward substrates containing tyrosine. Additionally, the increased selectivity of the variant led to reduced toxicity toward PC12 neuronal-like cells and 16-1000-fold improved resistance to wild-type inhibitors. PrECISE thus provides a powerful high-throughput capability to redesign human proteases for therapeutic use.


Frontiers in Microbiology | 2017

PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities

Joan E. Edwards; Robert J. Forster; Tony M. Callaghan; Veronika Dollhofer; Sumit S. Dagar; Yanfen Cheng; Jong-Soo Chang; Sandra Kittelmann; Katerina Fliegerova; Anil Kumar Puniya; John K. Henske; Sean P. Gilmore; Michelle A. O'Malley; Gareth W. Griffith; Hauke Smidt

Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.


Anaerobe | 2016

Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi.

Kevin V. Solomon; John K. Henske; Michael K. Theodorou; Michelle A. O'Malley

Cell storage and DNA isolation are essential to developing an expanded suite of microorganisms for biotechnology. However, many features of non-model microbes, such as an anaerobic lifestyle and rigid cell wall, present formidable challenges to creating strain repositories and extracting high quality genomic DNA. Here, we establish accessible, high efficiency, and robust techniques to store lignocellulolytic anaerobic gut fungi long term without specialized equipment. Using glycerol as a cryoprotectant, gut fungal isolates were preserved for a minimum of 23 months at -80 °C. Unlike previously reported approaches, this improved protocol is non-toxic and rapid, with samples surviving twice as long with negligible growth impact. Genomic DNA extraction for these isolates was optimized to yield samples compatible with next generation sequencing platforms (e.g. Illumina, PacBio). Popular DNA isolation kits and precipitation protocols yielded preps that were unsuitable for sequencing due to carbohydrate contaminants from the chitin-rich cell wall and extensive energy reserves of gut fungi. To address this, we identified a proprietary method optimized for hardy plant samples that rapidly yielded DNA fragments in excess of 10 kb with minimal RNA, protein or carbohydrate contamination. Collectively, these techniques serve as fundamental tools to manipulate powerful biomass-degrading gut fungi and improve their accessibility among researchers.


Biotechnology and Bioengineering | 2017

Emerging technologies for protease engineering: New tools to clear out disease

Jennifer L. Guerrero; Patrick S. Daugherty; Michelle A. O'Malley

Proteases regulate many biological processes through their ability to activate or inactive their target substrates. Because proteases catalytically turnover proteins and peptides, they present unique opportunities for use in biotechnological and therapeutic applications. However, many proteases are capable of cleaving multiple physiological substrates. Therefore their activity, expression, and localization are tightly controlled to prevent unwanted proteolysis. Currently, the use of protease therapeutics has been limited to a handful of proteases with narrow substrate specificities, which naturally limits their toxicity. Wider application of proteases is contingent upon the development of methods for engineering protease selectivity, activity, and stability. Recent advances in the development of high-throughput, bacterial and yeast-based methods for protease redesign have yielded protease variants with novel specificities, reduced toxicity, and increased resistance to inhibitors. Here, we highlight new tools for protease engineering, including methods suitable for the redesign of human secreted proteases, and future opportunities to exploit the catalytic activity of proteases for therapeutic benefit. Biotechnol. Bioeng. 2017;114: 33-38.


Biotechnology and Bioengineering | 2018

Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose

John K. Henske; St. Elmo Wilken; Kevin V. Solomon; Chuck R. Smallwood; V. Shutthanandan; James E. Evans; Michael K. Theodorou; Michelle A. O'Malley

The conversion of lignocellulose‐rich biomass to bio‐based chemicals and higher order fuels remains a grand challenge, as single‐microbe approaches often cannot drive both deconstruction and chemical production steps. In contrast, consortia based bioprocessing leverages the strengths of different microbes to distribute metabolic loads and achieve process synergy, product diversity, and bolster yields. Here, we describe a biphasic fermentation scheme that combines the lignocellulolytic action of anaerobic fungi isolated from large herbivores with domesticated microbes for bioproduction. When grown in batch culture, anaerobic fungi release excess sugars from both cellulose and crude biomass due to a wealth of highly expressed carbohydrate active enzymes (CAZymes), converting as much as 49% of cellulose to free glucose. This sugar‐rich hydrolysate readily supports growth of Saccharomyces cerevisiae, which can be engineered to produce a range of value‐added chemicals. Further, construction of metabolic pathways from transcriptomic data reveals that anaerobic fungi do not catabolize all sugars that their enzymes hydrolyze from biomass, leaving other carbohydrates such as galactose, arabinose, and mannose available as nutritional links to other microbes in their consortium. Although basal expression of CAZymes in anaerobic fungi is high, it is drastically amplified by cellobiose breakout products encountered during biomass hydrolysis. Overall, these results suggest that anaerobic fungi provide a nutritional benefit to the rumen microbiome, which can be harnessed to design synthetic microbial communities that compartmentalize biomass degradation and bioproduct formation.

Collaboration


Dive into the Michelle A. O'Malley's collaboration.

Top Co-Authors

Avatar

John K. Henske

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor V. Grigoriev

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Lipzen

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Aaron T. Wright

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alan Kuo

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Asaf Salamov

United States Department of Energy

View shared research outputs
Researchain Logo
Decentralizing Knowledge