Michelle Cua
Simon Fraser University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michelle Cua.
Biomedical Optics Express | 2015
Kevin Wong; Yifan Jian; Michelle Cua; Stefano Bonora; Robert J. Zawadzki; Marinko V. Sarunic
Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.
British Journal of Ophthalmology | 2015
Jing Xu; Sherry Han; Chandrakumar Balaratnasingam; Zaid Mammo; Kevin Wong; Sieun Lee; Michelle Cua; Mei Young; Andrew W. Kirker; David A. Albiani; Farzin Forooghian; Paul J. Mackenzie; Andrew Merkur; Dao-Yi Yu; Marinko V. Sarunic
This report describes a novel, non-invasive and label-free optical imaging technique, speckle variance optical coherence tomography (svOCT), for visualising blood flow within human retinal capillary networks. This imaging system uses a custom-built swept source OCT system operating at a line rate of 100 kHz. Real-time processing and visualisation is implemented on a consumer grade graphics processing unit. To investigate the quality of microvascular detail acquired with this device we compared images of human capillary networks acquired with svOCT and fluorescein angiography. We found that the density of capillary microvasculature acquired with this svOCT device was visibly greater than fluorescein angiography. We also found that this svOCT device had the capacity to generate en face images of distinct capillary networks that are morphologically comparable with previously published histological studies. Finally, we found that this svOCT device has the ability to non-invasively illustrate the common manifestations of diabetic retinopathy and retinal vascular occlusion. The results of this study suggest that graphics processing unit accelerated svOCT has the potential to non-invasively provide useful quantitative information about human retinal capillary networks. Therefore svOCT may have clinical and research applications for the management of retinal microvascular diseases, which are a major cause of visual morbidity worldwide.
PLOS ONE | 2016
Ling Lee; Christine E. Genge; Michelle Cua; Xiaoye Sheng; Kaveh Rayani; Mirza Faisal Beg; Marinko V. Sarunic; Glen F. Tibbits
The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA– 18°C; warm acclimated WA– 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling.
Journal of Biomedical Optics | 2014
Michelle Cua; Eric Lin; Ling Lee; Xiaoye Sheng; Kevin Wong; Glen F. Tibbits; Mirza Faisal Beg; Marinko V. Sarunic
Abstract. Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.
Scientific Reports | 2016
Michelle Cua; Daniel J. Wahl; Yuan Zhao; Sujin Lee; Stefano Bonora; Robert J. Zawadzki; Yifan Jian; Marinko V. Sarunic
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.
Journal of Biomedical Optics | 2016
Michelle Cua; Sujin Lee; Dongkai Miao; Myeong Jin Ju; Paul J. Mackenzie; Yifan Jian; Marinko V. Sarunic
Abstract. High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.
PLOS ONE | 2016
Ling Lee; Jason Z. Cui; Michelle Cua; Mitra Esfandiarei; Xiaoye Sheng; Winsey Chui; Michael Haoying Xu; Marinko V. Sarunic; Mirza Faisal Beg; Cornelius van Breemen; George G.S. Sandor; Glen F. Tibbits; Vincenzo Lionetti
Marfan syndrome (MFS) is an autosomal-dominant disorder of connective tissue caused by mutations in the fibrillin-1 (FBN1) gene. Mortality is often due to aortic dissection and rupture. We investigated the structural and functional properties of the heart and aorta in a [Fbn1C1039G/+] MFS mouse using high-resolution ultrasound (echo) and optical coherence tomography (OCT). Echo was performed on 6- and 12-month old wild type (WT) and MFS mice (n = 8). In vivo pulse wave velocity (PWV), aortic root diameter, ejection fraction, stroke volume, left ventricular (LV) wall thickness, LV mass and mitral valve early and atrial velocities (E/A) ratio were measured by high resolution echocardiography. OCT was performed on 12-month old WT and MFS fixed mouse hearts to measure ventricular volume and mass. The PWV was significantly increased in 6-mo MFS vs. WT (366.6 ± 19.9 vs. 205.2 ± 18.1 cm/s; p = 0.003) and 12-mo MFS vs. WT (459.5 ± 42.3 vs. 205.3 ± 30.3 cm/s; p< 0.0001). PWV increased with age in MFS mice only. We also found a significantly enlarged aortic root and decreased E/A ratio in MFS mice compared with WT for both age groups. The [Fbn1C1039G/+] mouse model of MFS replicates many of the anomalies of Marfan patients including significant aortic dilation, central aortic stiffness, LV systolic and diastolic dysfunction. This is the first demonstration of the direct measurement in vivo of pulse wave velocity non-invasively in the aortic arch of MFS mice, a robust measure of aortic stiffness and a critical clinical parameter for the assessment of pathology in the Marfan syndrome.
Proceedings of SPIE | 2012
Michelle Cua; Anthony M. D. Lee; Pierre Lane; Annette McWilliams; Tawimas Shaipanich; Calum MacAulay; Victor X. D. Yang; Stephen Lam
Architectural changes in and remodeling of the bronchial and pulmonary vasculature are important pathways in diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. However, there is a lack of methods that can find and examine small bronchial vasculature in vivo. Structural lung airway imaging using optical coherence tomography (OCT) has previously been shown to be of great utility in examining bronchial lesions during lung cancer screening under the guidance of autofluorescence bronchoscopy. Using a fiber optic endoscopic OCT probe, we acquire OCT images from in vivo human subjects. The side-looking, circumferentially-scanning probe is inserted down the instrument channel of a standard bronchoscope and manually guided to the imaging location. Multiple images are collected with the probe spinning proximally at 100Hz. Due to friction, the distal end of the probe does not spin perfectly synchronous with the proximal end, resulting in non-uniform rotational distortion (NURD) of the images. First, we apply a correction algorithm to remove NURD. We then use a speckle variance algorithm to identify vasculature. The initial data show a vascaulture density in small human airways similar to what would be expected.
Journal of Biomedical Optics | 2018
Elham Abouei; Anthony M. D. Lee; Hamid Pahlevaninezhad; Geoffrey Hohert; Michelle Cua; Pierre Lane; Stephen Lam; Calum MacAulay
Abstract. We present a method for the correction of motion artifacts present in two- and three-dimensional in vivo endoscopic images produced by rotary-pullback catheters. This method can correct for cardiac/breathing-based motion artifacts and catheter-based motion artifacts such as nonuniform rotational distortion (NURD). This method assumes that en face tissue imaging contains slowly varying structures that are roughly parallel to the pullback axis. The method reduces motion artifacts using a dynamic time warping solution through a cost matrix that measures similarities between adjacent frames in en face images. We optimize and demonstrate the suitability of this method using a real and simulated NURD phantom and in vivo endoscopic pulmonary optical coherence tomography and autofluorescence images. Qualitative and quantitative evaluations of the method show an enhancement of the image quality.
Optics in the Life Sciences (2015), paper BW3A.4 | 2015
Yifan Jian; Kevin Wong; Daniel J. Wahl; Michelle Cua; Pengfei Zhang; Stefano Bonora; Robert J. Zawadzki; Marinko V. Sarunic
Wavefront sensorless adaptive optics is a novel technique that facilitates high resolution ophthalmic imaging such as and SLO; it replaces the Hartmann Shack wavefront sensor with an image-driven optimization algorithm and mitigates some challenges encountered with sensor-based designs.