Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Day is active.

Publication


Featured researches published by Michelle Day.


Trends in Neurosciences | 2007

D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons

D. James Surmeier; Jun B. Ding; Michelle Day; Zhongfeng Wang; Weixing Shen

Dopamine shapes a wide variety of psychomotor functions. This is mainly accomplished by modulating cortical and thalamic glutamatergic signals impinging upon principal medium spiny neurons (MSNs) of the striatum. Several lines of evidence suggest that dopamine D1 receptor signaling enhances dendritic excitability and glutamatergic signaling in striatonigral MSNs, whereas D2 receptor signaling exerts the opposite effect in striatopallidal MSNs. The functional antagonism between these two major striatal dopamine receptors extends to the regulation of synaptic plasticity. Recent studies, using transgenic mice in which cells express D1 and D2 receptors, have uncovered unappreciated differences between MSNs that shape glutamatergic signaling and the influence of DA on synaptic plasticity. These studies have also shown that long-term alterations in dopamine signaling produce profound and cell-type-specific reshaping of corticostriatal connectivity and function.


Cell | 2008

A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types

Myriam Heiman; Anne Schaefer; Shiaoching Gong; Jayms D. Peterson; Michelle Day; Keri Ramsey; Mayte Suárez-Fariñas; Cordelia Schwarz; Dietrich A. Stephan; D. James Surmeier; Paul Greengard; Nathaniel Heintz

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations.


Nature Neuroscience | 2006

Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models

Michelle Day; Zhongfeng Wang; Jun B. Ding; Xinhai An; C. A. Ingham; Andrew F Shering; David L. Wokosin; Ema Ilijic; Zhuoxin Sun; Allan R. Sampson; Enrico Mugnaini; Ariel Y. Deutch; Susan R. Sesack; Gordon W. Arbuthnott; D. James Surmeier

Parkinson disease is a common neurodegenerative disorder that leads to difficulty in effectively translating thought into action. Although it is known that dopaminergic neurons that innervate the striatum die in Parkinson disease, it is not clear how this loss leads to symptoms. Recent work has implicated striatopallidal medium spiny neurons (MSNs) in this process, but how and precisely why these neurons change is not clear. Using multiphoton imaging, we show that dopamine depletion leads to a rapid and profound loss of spines and glutamatergic synapses on striatopallidal MSNs but not on neighboring striatonigral MSNs. This loss of connectivity is triggered by a new mechanism—dysregulation of intraspine Cav1.3 L-type Ca2+ channels. The disconnection of striatopallidal neurons from motor command structures is likely to be a key step in the emergence of pathological activity that is responsible for symptoms in Parkinson disease.


Neuron | 2006

Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons

Zhongfeng Wang; Li Kai; Michelle Day; Jennifer Ronesi; Henry H. Yin; Jun B. Ding; Tatiana Tkatch; David M. Lovinger; D. James Surmeier

Long-term depression (LTD) of the synapse formed between cortical pyramidal neurons and striatal medium spiny neurons is central to many theories of motor plasticity and associative learning. The induction of LTD at this synapse is thought to depend upon D(2) dopamine receptors localized in the postsynaptic membrane. If this were true, LTD should be inducible in neurons from only one of the two projection systems of the striatum. Using transgenic mice in which neurons that contribute to these two systems are labeled, we show that this is not the case. Rather, in both cell types, the D(2) receptor dependence of LTD induction reflects the need to lower M(1) muscarinic receptor activity-a goal accomplished by D(2) receptors on cholinergic interneurons. In addition to reconciling discordant tracts of the striatal literature, these findings point to cholinergic interneurons as key mediators of dopamine-dependent striatal plasticity and learning.


Nature Neuroscience | 2007

Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons

Weixing Shen; Xinyong Tian; Michelle Day; Sasha Ulrich; Tatiana Tkatch; Neil M. Nathanson; D. James Surmeier

Dopamine-depleting lesions of the striatum that mimic Parkinsons disease induce a profound pruning of spines and glutamatergic synapses in striatopallidal medium spiny neurons, leaving striatonigral medium spiny neurons intact. The mechanisms that underlie this cell type–specific loss of connectivity are poorly understood. The Kir2 K+ channel is an important determinant of dendritic excitability in these cells. Here we show that opening of these channels is potently reduced by signaling through M1 muscarinic receptors in striatopallidal neurons, but not in striatonigral neurons. This asymmetry could be attributed to differences in the subunit composition of Kir2 channels. Dopamine depletion alters the subunit composition further, rendering Kir2 channels in striatopallidal neurons even more susceptible to modulation. Reduced opening of Kir2 channels enhances dendritic excitability and synaptic integration. This cell type–specific enhancement of dendritic excitability is an essential trigger for synaptic pruning after dopamine depletion, as pruning was prevented by genetic deletion of M1 muscarinic receptors.


The Journal of Neuroscience | 2008

Differential excitability and modulation of striatal medium spiny neuron dendrites.

Michelle Day; David L. Wokosin; Joshua L. Plotkin; Xinyoung Tian; D. James Surmeier

The loss of striatal dopamine (DA) in Parkinsons disease (PD) models triggers a cell-type-specific reduction in the density of dendritic spines in D2 receptor-expressing striatopallidal medium spiny neurons (D2 MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single backpropagating action potentials (bAPs) produced more reliable elevations in cytosolic Ca2+ concentration at distal dendritic locations in D2 MSNs than at similar locations in D1 receptor-expressing striatonigral MSNs (D1 MSNs). In both cell types, the dendritic Ca2+ entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K+ channels. Local application of DA depressed dendritic bAP-evoked Ca2+ transients, whereas application of ACh increased these Ca2+ transients in D2 MSNs, but not in D1 MSNs. After DA depletion, bAP-evoked Ca2+ transients were enhanced in distal dendrites and spines in D2 MSNs. Together, these results suggest that normally D2 MSN dendrites are more excitable than those of D1 MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models.


The Journal of Neuroscience | 2005

Dendritic Excitability of Mouse Frontal Cortex Pyramidal Neurons Is Shaped by the Interaction among HCN, Kir2, and Kleak Channels

Michelle Day; David B. Carr; Sasha Ulrich; Ema Ilijic; Tatiana Tkatch; D. James Surmeier

Dendritically placed, voltage-sensitive ion channels are key regulators of neuronal synaptic integration. In several cell types, hyperpolarization/cyclic nucleotide gated (HCN) cation channels figure prominently in dendritic mechanisms controlling the temporal summation of excitatory synaptic events. In prefrontal cortex, the sustained activity of pyramidal neurons in working memory tasks is thought to depend on the temporal summation of dendritic excitatory inputs. Yet we know little about how this is accomplished in these neurons and whether HCN channels play a role. To gain a better understanding of this process, layer V–VI pyramidal neurons in slices of mouse prelimbic and infralimbic cortex were studied. Somatic voltage-clamp experiments revealed the presence of rapidly activating and deactivating cationic currents attributable to HCN1/HCN2 channels. These channels were open at the resting membrane potential and had an apparent half-activation voltage near –90 mV. In the same voltage range, K+ currents attributable to Kir2.2/2.3 and K+-selective leak (Kleak) channels were prominent. Computer simulations grounded in the biophysical measurements suggested a dynamic interaction among Kir2, Kleak, and HCN channel currents in shaping membrane potential and the temporal integration of synaptic potentials. This inference was corroborated by experiment. Blockade of Kir2/Kleak channels caused neurons to depolarize, leading to the deactivation of HCN channels, the initiation of regular spiking (4–5 Hz), and enhanced temporal summation of EPSPs. These studies show that HCN channels are key regulators of synaptic integration in prefrontal pyramidal neurons but that their functional contribution is dependent on a partnership with Kir2 and Kleak channels.


Neuron | 2003

Transmitter Modulation of Slow, Activity-Dependent Alterations in Sodium Channel Availability Endows Neurons with a Novel Form of Cellular Plasticity

David B. Carr; Michelle Day; Angela R. Cantrell; Joshua Held; Todd Scheuer; William A. Catterall; D. James Surmeier

Voltage-gated Na+ channels are major targets of G protein-coupled receptor (GPCR)-initiated signaling cascades. These cascades act principally through protein kinase-mediated phosphorylation of the channel alpha subunit. Phosphorylation reduces Na+ channel availability in most instances without producing major alterations of fast channel gating. The nature of this change in availability is poorly understood. The results described here show that both GPCR- and protein kinase-dependent reductions in Na+ channel availability are mediated by a slow, voltage-dependent process with striking similarity to slow inactivation, an intrinsic gating mechanism of Na+ channels. This process is strictly associated with neuronal activity and develops over seconds, endowing neurons with a novel form of cellular plasticity shaping synaptic integration, dendritic electrogenesis, and repetitive discharge.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes

Michael E. Cahill; Zhong Xie; Michelle Day; Huzefa Photowala; Maria V. Barbolina; Courtney A. Miller; Craig Weiss; Jelena Radulovic; J. David Sweatt; John F. Disterhoft; D. James Surmeier; Peter Penzes

Dendritic spine morphogenesis contributes to brain function, cognition, and behavior, and is altered in psychiatric disorders. Kalirin is a brain-specific guanine-nucleotide exchange factor (GEF) for Rac-like GTPases and is a key regulator of spine morphogenesis. Here, we show that KALRN-knockout mice have specific reductions in cortical, but not hippocampal, Rac1 signaling and spine density, and exhibit reduced cortical glutamatergic transmission. These mice exhibit robust deficits in working memory, sociability, and prepulse inhibition, paralleled by locomotor hyperactivity reversible by clozapine in a kalirin-dependent manner. Several of these deficits are delayed and age-dependent. Our study thus links spine morphogenic signaling with age-dependent, delayed, disease-related phenotypes, including cognitive dysfunction.


Progress in Brain Research | 2010

The role of dopamine in modulating the structure and function of striatal circuits

D. James Surmeier; Weixing Shen; Michelle Day; Tracy S. Gertler; Savio Chan; Xianyong Tian; Joshua L. Plotkin

Dopamine (DA) is a key regulator of action selection and associative learning. The striatum has long been thought to be a major locus of DA action in this process. Although all striatal cell types express G protein-coupled receptors for DA, the effects of DA on principal medium spiny neurons (MSNs) understandably have received the most attention. In the two principal classes of MSN, DA receptor expression diverges, with striatonigral MSNs robustly expressing D(1) receptors and striatopallidal MSNs expressing D(2) receptors. In the last couple of years, our understanding of how these receptors and the intracellular signalling cascades that they couple to modulate dendritic physiology and synaptic plasticity has rapidly expanded, fuelled in large measure by the development of new optical and genetic tools. These tools also have enabled a rapid expansion of our understanding of the striatal adaptations in models of Parkinsons disease. This chapter highlights some of the major advances in these areas.

Collaboration


Dive into the Michelle Day's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weixing Shen

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhong Xie

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Weiss

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge