Michelle Debatisse
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michelle Debatisse.
Molecular Cell | 1998
Arnaud Coquelle; Franck Toledo; Sabine Stern; Anne Bieth; Michelle Debatisse
Genome rearrangements including gene amplification are frequent properties of tumor cells, but how they are related to the tumor microenvironment is unknown. Here, we report direct evidence for a causal relationship between hypoxia, induction of fragile sites, and gene amplification. Recently, we showed that breaks at fragile sites initiate intrachromosomal amplification. We demonstrate here that hypoxia is a potent fragile site inducer and that, like fragile sites inducing drugs, it drives fusion of double minutes (DMs) and their targeted reintegration into chromosomal fragile sites, generating homogeneously staining regions (HSRs). This pathway operates efficiently for DMs bearing different sequences, suggesting a model of hypoxia-driven formation of the HSRs containing nonsyntenic sequences frequently observed in solid tumors.
The EMBO Journal | 1992
Franck Toledo; D Le Roscouet; Gérard Buttin; Michelle Debatisse
Two‐colour in situ hybridization with probes for two co‐amplified markers located several megabases apart on chromosome 1 has been used to analyse early stages of adenylate deaminase 2 (AMPD2) gene amplification in Chinese hamster cells. In the amplified chromosomal structures, the distribution of hybridization spots identifies megabase‐long inverted repeats. Their organization is remarkably well accounted for if breakage‐fusion‐bridge cycles involving sister chromatids drive the amplification process at these early stages. During interphase the markers often segregate into distinct nuclear domains. Many nuclei have bulges or release micronuclei, carrying several copies of one or both markers. These observations indicate that the amplified units destabilize the nuclear organization and eventually lead to DNA breakage during interphase. We propose a model in which interphase breakage has a role in the progression of gene amplification.
The EMBO Journal | 1998
E. Pipiras; Arnaud Coquelle; A. Bieth; Michelle Debatisse
Interstitial deletions of tumour suppressor genes and amplification of oncogenes are two major manifestations of chromosomal instability in tumour cells. The development of model systems allowing the study of the events triggering these processes is of major clinical importance. Using the properties of the I‐SceI nuclease to introduce a localized double‐strand break (DSB) in a mammalian chromosome carrying its target sequence, we demonstrate here that both types of mutations can be initiated by non‐conservative DSB repair pathways. In our system, I‐SceI activity dissociates a transfected gpt gene from its promoter, allowing the isolation of gpt− clones. Our results show that intrachromatid single‐strand annealing events occur frequently, giving rise to interstitial deletions not accompanied by other chromosomal rearrangements. We also observed that, when present in the cells, extrachromosomal DNA molecules are integrated preferentially at the broken locus. Taking advantage of the insertion of the I‐SceI recognition sequence telomeric to and close to the dihydrofolate reductase gene, we show that a less frequent outcome of I‐SceI activity is the initiation of cycles of intrachromosomal amplification of this marker, from breaks at a site merging with the enzyme target.
Oncogene | 2004
Lorène Rozier; Eliane El-Achkar; Françoise Apiou; Michelle Debatisse
Fragile sites are classified as common or rare depending on their occurrence in the populations. While rare sites are mainly associated with inherited diseases, common sites have been involved in somatic rearrangements found in the chromosomes of cancer cells. Here we study a mouse locus containing the ionotropic glutamate receptor delta 2 (grid2) gene in which spontaneous chromosome rearrangements occur frequently, giving rise to mutant animals in inbred populations. We identify and clone common fragile sites overlapping the mouse grid2 gene and its human ortholog GRID2, lying respectively at bands 6C1 and 4q22 in a 7-Mb-long region of synteny. These results show a third example of orthologous common sites conserved at the molecular level, and reveal an unexpected link between an inherited disease and an aphidicolin-sensitive region. Recurrent deletions of subregions of band 4q22 have been previously described in human hepatocellular carcinomas. This 15-Mb-long region appears precisely centered on the site described here, which strongly suggests that it also plays a specific role in hepatic carcinogenesis.
Oncogene | 2002
Arnaud Coquelle; Lorène Rozier; Bernard Dutrillaux; Michelle Debatisse
Gene amplification is frequently associated with tumor progression, hence, understanding the underlying mechanisms is important. The study of in vitro model systems indicated that different initial mechanisms accumulate amplified copies within the chromosomes (hsr) or on extra-chromosomal elements (dmin). It has long been suggested that formation of dmin could also occur following hsr breakdown. In order to check this hypothesis, we developed an approach based on the properties of the I-SceI meganuclease, which induces targeted DNA double-strand breaks. A clone containing an I-SceI site, integrated by chance close to an endogenous dhfr gene locus, was used to select for methotrexate resistant mutants. We recovered clones in which the I-SceI site was passively co-amplified with the dhfr gene within the same hsr. We show that I-SceI-induced hsr breakdown leads to the formation of dmin and creates different types of chromosomal rearrangements, including inversions. This demonstrates, for the first time, a direct relationship between double-strand breaks and inversions. Finally, we show that activation of fragile sites by aphidicolin or hypoxia in hsr-containing cells also generates dmin and a variety of chromosomal rearrangements. This may constitute a valuable model to study the consequences of breaks induced in hsr of cancer cells in vivo.
PLOS Genetics | 2013
Stéphane Koundrioukoff; Sandra Carignon; Hervé Técher; Anne Letessier; Olivier Brison; Michelle Debatisse
Breaks at common fragile sites (CFS) are a recognized source of genome instability in pre-neoplastic lesions, but how such checkpoint-proficient cells escape surveillance and continue cycling is unknown. Here we show, in lymphocytes and fibroblasts, that moderate replication stresses like those inducing breaks at CFSs trigger chromatin loading of sensors and mediators of the ATR pathway but fail to activate Chk1 or p53. Consistently, we found that cells depleted of ATR, but not of Chk1, accumulate single-stranded DNA upon Mre11-dependent resection of collapsed forks. Partial activation of the pathway under moderate stress thus takes steps against fork disassembly but tolerates S-phase progression and mitotic onset. We show that fork protection by ATR is crucial to CFS integrity, specifically in the cell type where a given site displays paucity in backup replication origins. Tolerance to mitotic entry with under-replicated CFSs therefore results in chromosome breaks, providing a pool of cells committed to further instability.
Nucleic Acids Research | 2011
Yoav Lubelsky; Takayo Sasaki; Marjorie A. Kuipers; Isabelle Lucas; Michelle M. Le Beau; Sandra Carignon; Michelle Debatisse; Joseph A. Prinz; Jonathan H. Dennis; David M. Gilbert
Genome-scale mapping of pre-replication complex proteins has not been reported in mammalian cells. Poor enrichment of these proteins at specific sites may be due to dispersed binding, poor epitope availability or cell cycle stage-specific binding. Here, we have mapped sites of biotin-tagged ORC and MCM protein binding in G1-synchronized populations of Chinese hamster cells harboring amplified copies of the dihydrofolate reductase (DHFR) locus, using avidin-affinity purification of biotinylated chromatin followed by high-density microarray analysis across the DHFR locus. We have identified several sites of significant enrichment for both complexes distributed throughout the previously identified initiation zone. Analysis of the frequency of initiations across stretched DNA fibers from the DHFR locus confirmed a broad zone of de-localized initiation activity surrounding the sites of ORC and MCM enrichment. Mapping positions of mononucleosomal DNA empirically and computing nucleosome-positioning information in silico revealed that ORC and MCM map to regions of low measured and predicted nucleosome occupancy. Our results demonstrate that specific sites of ORC and MCM enrichment can be detected within a mammalian intitiation zone, and suggest that initiation zones may be regions of generally low nucleosome occupancy where flexible nucleosome positioning permits flexible pre-RC assembly sites.
Oncogene | 2007
Quignon F; Rozier L; Lachages Am; Bieth A; Simili M; Michelle Debatisse
Following prolonged mitotic spindle disruption by microtubule poisons, mammalian cells delay their entry into anaphase, then progressively slip out of mitosis and become tetraploid. Normal cells then stop cycling before S-phase onset, but the mechanisms underlying this arrest are still unclear. Here we show that a double block prevents endo-reduplication. First, cells that exit mitosis without a functional microtubule network are driven toward G0. Reconstitution of the network unmasks a second block that relies on DNA double-strand breaks occurring early in the G1 phase that follows the mitotic block. We propose that a stress signal elicited upon mitotic impairment triggers breakage, which couples the leaky spindle checkpoint to the stringent DNA damage response. Consistent with this finding, cells defective for the damage response continue cycling and acquire, within a single cell cycle, both chromosome rearrangements and abnormal chromosome numbers that remarkably mimic the complex genetic hallmark of tumorigenesis.
Journal of Cellular Biochemistry | 2001
E. Yu. Svetlova; Sergey V. Razin; Michelle Debatisse
We analyzed the replication pattern and the topological organization of a 200 kb long Chinese hamster polygenic locus, which spans the boundary of two isochores. One of them is G + C rich while the second one is highly A + T rich. Previous analysis of mutants amplified for this locus had identified, within the A + T rich isochore, a mitotic recombination hotspot and a replication origin separated by some 7 kb. The recombination hotspot exhibits structural features repeatedly observed at common fragile sites, including a typical enrichment in peaks of enhanced DNA helix flexibility. By studying the replication pattern of the same locus in the non‐amplified CHO cells, we confirm here the localization of the replication origin and show that the mitotic recombination hotspot does not correspond to a replicon junction. This finding makes questionable current hypotheses correlating replication termination regions with recombination prone sequences. Using topoisomerase II‐mediated DNA cleavage at matrix attachment sites, we identified a 40 kb‐long DNA anchorage region extending all along a transcription unit nested within the A + T rich isochore. Both the recombination hotspot and the replication origin lie within this topoisomerase II sensitive region, which suggests that features essential for initiation of recombination and initiation of DNA replication cluster within DNA anchorage regions. Features common to this region and to common fragile sites are discussed. J. Cell. Biochem. Suppl. 36: 170–178, 2001.
Recent results in cancer research | 1998
Michelle Debatisse; Arnaud Coquelle; Franck Toledo; Gérard Buttin
We studied the early stages of gene amplification in a Chinese hamster cell line and identified two distinct amplification mechanisms, both relying on an unequal segregation of gene copies at mitosis. In some cases, a sequence containing the selected gene is looped out, generating an acentric circular molecule, and amplification proceeds through unequal segregation of such extrachromosomal elements in successive cell cycles. In other cases, the accumulation of intrachromosomally amplified copies is driven by cycles of chromatid breakage, followed by fusion of sister chromatids devoid of a telomere, which leads to bridge formation and further break in mitosis (BFB cycles). We showed that some clastogenic drugs specifically trigger the intrachromosomal amplification pathway and strictly correlated this induction of BFB cycles to the ability of these drugs to activate fragile sites. In three model systems, we also established, that the location of centromeric and telomeric fragile sites relative to the selected genes determines the size and sequence content of the early amplicons.