Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Hilts is active.

Publication


Featured researches published by Michelle Hilts.


Physics in Medicine and Biology | 2000

Polymer gel dosimetry using x-ray computed tomography: a feasibility study

Michelle Hilts; C Audet; C Duzenli; A Jirasek

A new three-dimensional dosimetry technique using x-ray computed tomography (CT) to analyse polymer gels is proposed. The CT imaging is sensitive to radiation-induced density changes that occur within irradiated polyacrylamide gel (PAG). In this preliminary study, a CT imaging protocol is developed to optimize CT images of PAG; the response of PAG CT number to dose (N(CT)-dose response) and the reproducibility of the response are investigated, and the use of CT to analyse PAG is compared with MRI. Experiments were conducted using two 1.5 l cylindrical PAG phantoms (3% acrylamide, 3% bis and 5% gelatin by weight), one irradiated with four intersecting 10 MV photon beams and the other with 10 sets of 6 MV parallel opposed circular radiosurgery fields. The final imaging protocol involves using optimum CT parameters (120 kVp and 200 mAs for our GE HiSpeed CT/i scanner), image averaging and background subtraction. The N(CT)-dose response is reproducible, linear up to 800-1000 cGy and is relatively insensitive to the gel temperature during imaging. The dose resolution is approximately 50 cGy for an image thickness of 10 mm. Despite the low dose resolution, preliminary results indicate that this CT technique provides accurate localization of high dose gradients such as those observed in stereotactic radiosurgery. Thus, given the availability and speed of CT scanners, the technique has the potential to be a valuable and practical 3D dose verification tool in radiation therapy.


Medical Physics | 2003

Image filtering for improved dose resolution in CT polymer gel dosimetry

Michelle Hilts; Cheryl Duzenli

X-ray computed tomography (CT) has been established as a feasible method of performing dosimetry using polyacrylamide gels (PAGs). A small density change occurs in PAG upon irradiation that provides contrast in PAG CT images. However, low dose resolution limits the clinical usefulness of the technique. This work investigates the potential of using image filtering techniques on PAG CT images in order to reduce image noise and improve dose resolution. CT image noise for the scanner and protocol used for the gel images is analyzed and found to be Gaussian distributed and independent of the contrast level in the images. As a result, several filters for reducing spatially invariant noise are investigated: mean, median, midpoint, adaptive mean, alpha-trimmed mean, sigma mean, and a relatively new filter called SUSAN (smallest univalue segment assimilating nucleus). All filters are applied, using 3x3, 5x5, and 7x7 pixel masks, to a CT image of a PAG irradiated with a stereotactic radiosurgery dose distribution. The dose resolution within 95% confidence (D(delta)95%) is calculated and compared for each filtered image, as well the unfiltered image. In addition, the ability of the filters to maintain the spatial integrity of the dose distribution is evaluated and compared. Results clearly indicate that the filters are not equal in their ability to improve D(delta)95% or in their effect on the spatial integrity of the dose distribution. In general, increasing mask size improves D(delta)95% but simultaneously degrades spatial dose information. The mean filter provides the greatest improvement in D(delta)95%, but also the greatest loss of spatial dose information. The SUSAN, mean adaptive, and alpha-trimmed mean filters all provide comparable, but slightly poorer dose resolution. In addition, the SUSAN and adaptive filters both excel at maintaining the spatial distribution of dose and overall are the best performing filters for this application. The midpoint filter, normally useful for Gaussian noise, is poor all-round, dramatically distorting the dose distribution for masks greater than 3x3. The median filter, a common edge preserving noise reduction filter, performs moderately well, but artificially increases high dose gradients. The sigma filter preserves the spatial distribution of dose very well but is least effective at improving dose resolution. In summary, dose resolution can be significantly improved in CT PAG dosimetry through postprocessing of CT images using spatial noise reduction filters. However, such filters are not equal in their ability to improve dose resolution or to maintain the spatial integrity of the dose distribution and an appropriate filter must be chosen depending on clinical demands of the application.


Journal of Applied Clinical Medical Physics | 2002

CT gel dosimetry technique: Comparison of a planned and measured 3D stereotactic dose volume

C. Audet; Michelle Hilts; A Jirasek; C. Duzenli

This study presents a 3D dose mapping of complex dose distributions using an x‐ray computed tomography (CT) polymer gel dosimetry technique. Two polyacrylamide gels (PAGs) of identical composition were irradiated with the same four arc stereotactic treatment to maximum doses of 15 Gy (PAG1) and 8 Gy (PAG2). The PAGs were CT imaged using a previously defined protocol that involves image averaging and background subtraction to improve image quality. For comparison with the planned isodose distribution, the PAG images were converted to relative dose maps using a CT number‐dose calibration curve or simple division. The PAG images were then co‐registered with the planning CT images in the BrainLab® treatment planning software which automatically provides reconstructed sagittal and coronal images for 3D evaluation of measured and planned dose. The hypo‐intense high dose region in both sets of gel images agreed with the planned 80% isodose contour and was shifted by up to 1.5 and 3.0 mm in the axial and reconstructed planes, respectively. This demonstrates the ability of the CT gel technique to accurately localize the high dose region produced by the stereotactic treatment. The resulting agreement of the measured relative dose volume for PAG1 was within 3.0 mm for the 50% and 80% isodose surfaces. However, the dose contrast was too low in PAG2 to allow for accurate definition of measured relative dose surfaces. Thus, a PAG should be irradiated to higher doses if quantitative relative dose information is required. Unfortunately, this implies use of an additional PAG and its CT number dose response since doses greater than 8–10 Gy fall outside the linear regions of the response. PACS number(s): 87.53.–j, 87.57.–s, 87.59.Fm


Physics in Medicine and Biology | 2006

Investigation of tetrakis hydroxymethyl phosphonium chloride as an antioxidant for use in x-ray computed tomography polyacrylamide gel dosimetry

A Jirasek; Michelle Hilts; C Shaw; P Baxter

Of the antioxidants used to scavenge oxygen in polymer gel dosimeters, tetrakis (hydroxymethyl) phosphonium chloride (THPC) has been shown to hold great promise due to its rapid oxygen scavenging abilities. In this study we (a) investigate the use of THPC as an antioxidant for polyacrylamide gel (PAGAT) dosimeters used in conjunction with x-ray computed tomography (CT) and (b) work to establish the reaction mechanisms of THPC with the polymer gel constituents. We establish the dose response reproducibility of PAGAT dosimeters when imaged with CT and show that PAGAT dosimeters exhibit highly reproducible dose responses for a range of irradiation times post gel manufacture (2-6 h) and CT imaging times post gel irradiation (1-5 days). The THPC concentration within the gel leading to a maximized dose response and minimized O(2) inhibition of polymerization is found to be approximately 4.5 mM. We further assess the stability of PAGAT dosimeters by investigating the reactions of THPC with the individual gel constituents. The importance of utilizing deionized water in polymer gel manufacture is noted. We show that, while THPC remains unreactive with acrylamide and bis-acrylamide under unirradiated conditions, THPC can react with gelatin to increase the cross-linking of the gelatin matrix in unirradiated dosimeters. THPC reactions with gelatin can lead to the lower observed dose sensitivity of PAGAT (approximately 0.36 +/- 0.04 H Gy(-1)) as compared to polyacrylamide gels manufactured under anoxic conditions (approximately 0.83 +/- 0.03 H Gy(-1)). The reactions of THPC which lead to O(2) scavenging, and potential reactions of THPC with other gel constituents, are proposed.


Physics in Medicine and Biology | 2005

Technical considerations for implementation of x-ray CT polymer gel dosimetry

Michelle Hilts; A Jirasek; C Duzenli

Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.


International Journal of Radiation Oncology Biology Physics | 2009

3D Ultrasound Can Contribute to Planning CT to Define the Target for Partial Breast Radiotherapy

Tanya Berrang; Pauline T. Truong; C. Popescu; Laura Drever; Hosam A. Kader; Michelle Hilts; Tracy Mitchell; Siew Yan Soh; Letricia Sands; Stuart F. Silver; Ivo A. Olivotto

PURPOSE The role of three-dimensional breast ultrasound (3D US) in planning partial breast radiotherapy (PBRT) is unknown. This study evaluated the accuracy of coregistration of 3D US to planning computerized tomography (CT) images, the seroma contouring consistency of radiation oncologists using the two imaging modalities and the clinical situations in which US was associated with improved contouring consistency compared to CT. MATERIALS AND METHODS Twenty consecutive women with early-stage breast cancer were enrolled prospectively after breast-conserving surgery. Subjects underwent 3D US at CT simulation for adjuvant RT. Three radiation oncologists independently contoured the seroma on separate CT and 3D US image sets. Seroma clarity, seroma volumes, and interobserver contouring consistency were compared between the imaging modalities. Associations between clinical characteristics and seroma clarity were examined using Pearson correlation statistics. RESULTS 3D US and CT coregistration was accurate to within 2 mm or less in 19/20 (95%) cases. CT seroma clarity was reduced with dense breast parenchyma (p = 0.035), small seroma volume (p < 0.001), and small volume of excised breast tissue (p = 0.01). US seroma clarity was not affected by these factors (p = NS). US was associated with improved interobserver consistency compared with CT in 8/20 (40%) cases. Of these 8 cases, 7 had low CT seroma clarity scores and 4 had heterogeneously to extremely dense breast parenchyma. CONCLUSION 3D US can be a useful adjunct to CT in planning PBRT. Radiation oncologists were able to use US images to contour the seroma target, with improved interobserver consistency compared with CT in cases with dense breast parenchyma and poor CT seroma clarity.


International Journal of Radiation Oncology Biology Physics | 2002

Prostate brachytherapy postimplant dosimetry: a comparison of prostate quadrants

Sabeena Sidhu; W. James Morris; Ingrid Spadinger; Mira Keyes; Michelle Hilts; Robert Harrison; Karl Otto; Michael McKenzie; Alexander Agranovich

PURPOSE To investigate postimplant dosimetry for different regions of the prostate gland in patients treated with transperineal 125Iodine brachytherapy implants for low- and intermediate-risk prostate cancer. METHODS AND MATERIALS Two hundred eighty-four patients treated with permanent interstitial prostate brachytherapy comprised the study population. A nonuniform, urethral-sparing algorithm was used to plan all patients. Prostate contours were outlined on postimplant CT images. Prostate volumes were then divided into four quadrants: anterior-superior quadrant (ASQ), posterior-superior quadrant (PSQ), anterior-inferior quadrant (AIQ), and posterior-inferior quadrant (PIQ). Dose-volume histograms (DVHs) were calculated for the whole prostate and each quadrant. RESULTS The mean postimplant V(100) +/- 95% confidence (the percent prostate volume encompassed within the isodose surface comprising the prescription dose = 144 Gy) for the ASQ was 78.5 +/- 1.9, which was significantly lower than that of the PSQ, AIQ, and PIQ in which the V(100) plus minus 95% confidence values were 94.9 +/- 0.8, 92.6 +/- 1.2, and 98.7 +/- 0.3, respectively. The mean V(100) +/- 95% confidence for the whole prostate was 90.4 +/- 0.8. Mean values for V(150) and D(90) (the minimum dose in Gy received by 90% of the target volume) for the four quadrants and the whole prostate showed similar results. CONCLUSIONS Underdosed areas of the planning target volume (PTV), if present, were largely confined to the ASQ, which received a significantly lower dose, on average, compared to the other three quadrants of the prostate.


Physics in Medicine and Biology | 2010

RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation

Sofie Ceberg; Isabelle Gagne; Helen Gustafsson; Jonas Bengtsson Scherman; S. Korreman; Flemming Kjær-Kristoffersen; Michelle Hilts; Sven Bäck

The aim of this study was to verify the advanced inhomogeneous dose distribution produced by a volumetric arc therapy technique (RapidArc) using 3D gel measurements and Monte Carlo (MC) simulations. The TPS (treatment planning system)-calculated dose distribution was compared with gel measurements and MC simulations, thus investigating any discrepancy between the planned dose delivery and the actual delivery. Additionally, the reproducibility of the delivery was investigated using repeated gel measurements. A prostate treatment plan was delivered to a 1.3 liter nPAG gel phantom using one single arc rotation and a target dose of 3.3 Gy. Magnetic resonance imaging of the gel was carried out using a 1.5 T scanner. The MC dose distributions were calculated using the VIMC-Arc code. The relative absorbed dose differences were calculated voxel-by-voxel, within the volume enclosed by the 90% isodose surface (VOI(90)), for the TPS versus gel and TPS versus MC. The differences between the verification methods, MC versus gel, and between two repeated gel measurements were investigated in the same way. For all volume comparisons, the mean value was within 1% and the standard deviation of the differences was within 2.5% (1SD). A 3D gamma analysis between the dose matrices were carried out using gamma criteria 3%/3 mm and 5%/5 mm (% dose difference and mm distance to agreement) within the volume enclosed by the 50% isodose surface (VOI(50)) and the 90% isodose surface (VOI(90)), respectively. All comparisons resulted in very high pass rates. More than 95% of the TPS points were within 3%/3 mm of both the gel measurement and MC simulation, both inside VOI(50) and VOI(90). Additionally, the repeated gel measurements showed excellent consistency, indicating reproducible delivery. Using MC simulations and gel measurements, this verification study successfully demonstrated that the RapidArc plan was both accurately calculated and delivered as planned.


Physics in Medicine and Biology | 2004

Effects of gel composition on the radiation induced density change in PAG polymer gel dosimeters: a model and experimental investigations.

Michelle Hilts; A Jirasek; C Duzenli

Due to a density change that occurs in irradiated polyacrylamide gel (PAG), x-ray computed tomography (CT) has emerged as a feasible method of performing polymer gel dosimetry. However, applicability of the technique is currently limited by low sensitivity of the density change to dose. This work investigates the effect of PAG composition on the radiation induced density change and provides direction for future work in improving the sensitivity of CT polymer gel dosimetry. A model is developed that describes the PAG density change (delta(rho)gel) as a function of both polymer yield (%P) and an intrinsic density change, per unit polymer yield, that occurs on conversion of monomer to polymer (delta(rho)polymer). %P is a function of the fraction of monomer consumed and the weight fraction of monomer in the unirradiated gel (%T). Applying the model to experimental CT and Raman spectroscopic data, two important fundamental properties of the response of PAG density to dose (delta(rho)gel dose response) are discovered. The first property is that delta(rho)polymer)depends on PAG %C (cross-linking fraction of total monomer) such that low and high %C PAGs exhibit a higher deltarho(polymer)than do more intermediate %C PAGs. This relationship is opposite to the relationship of polymer yield to %C and is explained by the effect of %C on the type of polymer formed. The second property is that the delta(rho)gel dose response is linearly dependent on %T. From the model, the inference is that, at least for %T < or = 2%, monomer consumption and delta(rho)polymer depend solely on %C. In terms of optimizing CT polymer gel dosimetry for high sensitivity, these results indicate that delta(rho)polymer can be expected to vary with each polymer gel system and thus should be considered when choosing a polymer gel for CT gel dosimetry. However, delta(rho)polymerand %P cannot be maximized simultaneously and maximizing %P, by choosing gels with intermediate %C and high %T, is found to have the greatest impact on increasing the sensitivity of PAG density to dose. As such, future research into new gel formulations for high sensitivity CT polymer gel dosimetry should focus on gels that exhibit an intrinsic density change and maximizing polymer yield in these systems.


Medical Physics | 2007

Adaptive mean filtering for noise reduction in CT polymer gel dosimetry

Michelle Hilts; A Jirasek

X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR approximately 20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR approximately 5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.

Collaboration


Dive into the Michelle Hilts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H Johnston

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

C Duzenli

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Fenster

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge