Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Hong is active.

Publication


Featured researches published by Michelle Hong.


Journal of Clinical Investigation | 2010

Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma

Jo Eyles; Anne-Laure Puaux; Xiaojie Wang; Benjamin Toh; Celine Prakash; Michelle Hong; Tze Guan Tan; Lin Zheng; Lai Chun Ong; Yi Jin; Masashi Kato; Armelle Prévost-Blondel; Pierce K. H. Chow; Henry Yang; Jean-Pierre Abastado

Although metastasis is the leading cause of cancer-related death, it is not clear why some patients with localized cancer develop metastatic disease after complete resection of their primary tumor. Such relapses have been attributed to tumor cells that disseminate early and remain dormant for prolonged periods of time; however, little is known about the control of these disseminated tumor cells. Here, we have used a spontaneous mouse model of melanoma to investigate tumor cell dissemination and immune control of metastatic outgrowth. Tumor cells were found to disseminate throughout the body early in development of the primary tumor, even before it became clinically detectable. The disseminated tumor cells remained dormant for varying periods of time depending on the tissue, resulting in staggered metastatic outgrowth. Dormancy in the lung was associated with reduced proliferation of the disseminated tumor cells relative to the primary tumor. This was mediated, at least in part, by cytostatic CD8+ T cells, since depletion of these cells resulted in faster outgrowth of visceral metastases. Our findings predict that immune responses favoring dormancy of disseminated tumor cells, which we propose to be the seed of subsequent macroscopic metastases, are essential for prolonging the survival of early stage cancer patients and suggest that therapeutic strategies designed to reinforce such immune responses may produce marked benefits in these patients.


Cancer Research | 2011

Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control.

Michelle Hong; Anne Laure Puaux; Caleb Huang; Laure Loumagne; Charlene Tow; Charles R. Mackay; Masashi Kato; Armelle Prévost-Blondel; Marie Françoise Avril; Alessandra Nardin; Jean Pierre Abastado

T-cell infiltration is known to impact tumor growth and is associated with cancer patient survival. However, the molecular cues that favor T-cell infiltration remain largely undefined. Here, using a genetically engineered mouse model of melanoma, we show that CXCR3 ligands and CCL5 synergize to attract effector T cells into cutaneous metastases, and their expression inhibits tumor growth. Treatment of tumor-bearing mice with chemotherapy induced intratumoral expression of these chemokines and favored T-cell infiltration into cutaneous tumors. In patients with melanoma, these chemokines were also upregulated in chemotherapy-sensitive lesions following chemotherapy, and correlated with T-cell infiltration, tumor control, and patient survival. We found that dacarbazine, temozolomide, and cisplatin induced expression of T-cell-attracting chemokines in several human melanoma cell lines in vitro. These data identify the induction of intratumoral expression of chemokines as a novel cell-extrinsic mechanism of action of chemotherapy that results in the recruitment of immune cells with antitumor activity. Therefore, identifying chemotherapeutic drugs able to induce the expression of T-cell-attracting chemokines in cancer cells may represent a novel strategy to improve the efficacy of cancer immunotherapy.


PLOS Pathogens | 2014

Toll-Like Receptor 8 Agonist and Bacteria Trigger Potent Activation of Innate Immune Cells in Human Liver

Juandy Jo; Anthony T. Tan; James E. Ussher; Elena Sandalova; Xin-Zi Tang; A. Tan-Garcia; Natalie To; Michelle Hong; Adeline Chia; Upkar S. Gill; P. Kennedy; K.C. Tan; Kang Hoe Lee; Gennaro De Libero; Adam J. Gehring; Christian B. Willberg; Paul Klenerman; Antonio Bertoletti

The ability of innate immune cells to sense and respond to impending danger varies by anatomical location. The liver is considered tolerogenic but is still capable of mounting a successful immune response to clear various infections. To understand whether hepatic immune cells tune their response to different infectious challenges, we probed mononuclear cells purified from human healthy and diseased livers with distinct pathogen-associated molecules. We discovered that only the TLR8 agonist ssRNA40 selectively activated liver-resident innate immune cells to produce substantial quantities of IFN-γ. We identified CD161Bright mucosal-associated invariant T (MAIT) and CD56Bright NK cells as the responding liver-resident innate immune cells. Their activation was not directly induced by the TLR8 agonist but was dependent on IL-12 and IL-18 production by ssRNA40-activated intrahepatic monocytes. Importantly, the ssRNA40-induced cytokine-dependent activation of MAIT cells mirrored responses induced by bacteria, i.e., generating a selective production of high levels of IFN-γ, without the concomitant production of TNF-α or IL-17A. The intrahepatic IFN-γ production could be detected not only in healthy livers, but also in HBV- or HCV-infected livers. In conclusion, the human liver harbors a network of immune cells able to modulate their immunological responses to different pathogen-associated molecules. Their ability to generate a strong production of IFN-γ upon stimulation with TLR8 agonist opens new therapeutic opportunities for the treatment of diverse liver pathologies.


Journal of Autoimmunity | 2016

Human liver-resident CD56bright/CD16neg NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways

Kelly Hudspeth; Matteo Donadon; Matteo Cimino; Elena Pontarini; Paolo Tentorio; Max Preti; Michelle Hong; Antonio Bertoletti; Silvio Bicciato; Pietro Invernizzi; Enrico Lugli; Guido Torzilli; M. Eric Gershwin; Domenico Mavilio

RATIONALE The liver-specific natural killer (NK) cell population is critical for local innate immune responses, but the mechanisms that lead to their selective homing and the definition of their functionally relevance remain enigmatic. OBJECTIVES We took advantage of the availability of healthy human liver to rigorously define the mechanisms regulating the homing of NK cells to liver and the repertoire of receptors that distinguish liver-resident NK (lr-NK) cells from circulating counterparts. FINDINGS Nearly 50% of the entire liver NK cell population is composed of functionally relevant CD56(bright) lr-NK cells that localize within hepatic sinusoids. CD56(bright) lr-NK cells express CD69, CCR5 and CXCR6 and this unique repertoire of chemokine receptors is functionally critical as it determines selective migration in response to the chemotactic stimuli exerted by CCL3, CCL5 and CXCL16. Here, we also show that hepatic sinusoids express CCL3(pos) Kupffer cells, CXCL16(pos) endothelial cells and CCL5(pos) T and NK lymphocytes. The selective presence of these chemokines in sinusoidal spaces creates a unique tissue niche for lr-CD56(bright) NK cells that constitutively express CCR5 and CXCR6. CD56(bright) lr-NK cells co-exist with CD56(dim) conventional NK (c-NK) cells that are, interestingly, transcriptionally and phenotypically similar to their peripheral circulating counterparts. Indeed, CD56(dim) c-NK cells lack expression of CD69, CCR5, and CXCR6 but express selectins, integrins and CX3CR1. CONCLUSION Our findings disclosing the phenotypic and functional differences between lr-Nk cells and c-NK cells are critical to distinguish liver-specific innate immune responses. Hence, any therapeutic attempts at modifying the large population of CD56(bright) lr-NK cells will require modification of hepatic CCR5 and CXCR6.


Gastroenterology | 2016

HBV DNA Integration and Clonal Hepatocyte Expansion in Chronic Hepatitis B Patients Considered Immune Tolerant

William S. Mason; Upkar S. Gill; Samuel Litwin; Yan Zhou; Suraj Peri; Oltin Pop; Michelle Hong; Sandhia Naik; Alberto Quaglia; Antonio Bertoletti; P. Kennedy

BACKGROUND & AIMS Chronic infection with hepatitis B virus (HBV) progresses through different phases. The first, called the immune-tolerant phase, has been associated with a lack of disease activity. We examined HBV-DNA integration, clonal hepatocyte expansion, HBV antigen expression, and HBV-specific immune responses in patients in the immune-tolerant phase to assess whether this designation is appropriate or if there is evidence of disease activity. METHODS We studied HBV-DNA integration, clonal hepatocyte expansion, and expression of hepatitis B surface antigen and core antigen in liver tissues from 26 patients with chronic HBV infection (ages, 14-39 y); 9 patients were positive for hepatitis B e antigen (HBeAg) in the immune-tolerant phase and were matched for age with 10 HBeAg-positive patients with active disease and 7 HBeAg-negative patients with active disease. Peripheral blood samples were collected and HBV-specific T cells were quantified for each group. RESULTS Detection of HBV antigens differed among groups. However, unexpectedly high numbers of HBV-DNA integrations, randomly distributed among chromosomes, were detected in all groups. Clonal hepatocyte expansion in patients considered immune tolerant also was greater than expected, potentially in response to hepatocyte turnover mediated by HBV-specific T cells, which were detected in peripheral blood cells from patients in all phases of infection. CONCLUSIONS We measured HBV-specific T cells, HBV-DNA integration, and clonal hepatocyte expansion in different disease phases of young patients with chronic hepatitis B, with emphasis on the so-called immune-tolerant phase. A high level of HBV-DNA integration and clonal hepatocyte expansion in patients considered immune tolerant indicated that hepatocarcinogenesis could be underway-even in patients with early stage chronic HBV infection. Our findings do not support the concepts that this phase is devoid of markers of disease progression or that an immune response has not been initiated. We propose that this early phase be called a high-replication, low-inflammation stage. The timing of therapeutic interventions to minimize further genetic damage to the hepatocyte population should be reconsidered.


Molecular Therapy | 2009

Combinatorial Control of Suicide Gene Expression by Tissue-specific Promoter and microRNA Regulation for Cancer Therapy

Chunxiao Wu; Jiakai Lin; Michelle Hong; Yukti Choudhury; Poonam Balani; Doreen Siu Yi Leung; Lam H Dang; Ying Zhao; Jieming Zeng; Shu Wang

Transcriptional targeting using a tissue-specific cellular promoter is proving to be a powerful means for restricting transgene expression in targeted tissues. In the context of cancer suicide gene therapy, this approach may lead to cytotoxic effects in both cancer and nontarget normal cells. Considering microRNA (miRNA) function in post-transcriptional regulation of gene expression, we have developed a viral vector platform combining cellular promoter-based transcriptional targeting with miRNA regulation for a glioma suicide gene therapy in the mouse brain. The therapy employed, in a single baculoviral vector, a glial fibrillary acidic protein (GFAP) gene promoter and the repeated target sequences of three miRNAs that are enriched in astrocytes but downregulated in glioblastoma cells to control the expression of the herpes simplex virus thymidine kinase (HSVtk) gene. This resulted in significantly improved in vivo selectivity over the use of a control vector without miRNA regulation, enabling effective elimination of human glioma xenografts while producing negligible toxic effects on normal astrocytes. Thus, incorporating miRNA regulation into a transcriptional targeting vector adds an extra layer of security to prevent off-target transgene expression and should be useful for the development of gene delivery vectors with high targeting specificity for cancer therapy.


Nature Communications | 2015

Trained immunity in newborn infants of HBV-infected mothers

Michelle Hong; Elena Sandalova; Diana Low; Adam J. Gehring; Stefania Fieni; Barbara Amadei; Simonetta Urbani; Yap-Seng Chong; Ernesto Guccione; Antonio Bertoletti

The newborn immune system is characterized by an impaired Th1-associated immune response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought to exploit the newborns’ immune system immaturity by inducing a state of immune tolerance that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV exposure in utero triggers a state of trained immunity, characterized by innate immune cell maturation and Th1 development, which in turn enhances the ability of cord blood immune cells to respond to bacterial infection in vitro. These training effects are associated with an alteration of the cytokine environment characterized by low IL-10 and, in most cases, high IL-12p40 and IFN-α2. Our data uncover a potentially symbiotic relationship between HBV and its natural host, and highlight the plasticity of the fetal immune system following viral exposure in utero.


Journal of Controlled Release | 2008

A peptide-based carrier for intracellular delivery of proteins into malignant glial cells in vitro

Chunxiao Wu; Seong Loong Lo; Jerome Boulaire; Michelle Hong; Hui Min Beh; Doreen Siu Yi Leung; Shu Wang

Aiming at identification of novel peptides that can be employed for effective targeting of malignant gliomas, we used a 12-mer peptide phage display library and cultured human malignant glioma cells for phage selection. Several common phage clones emerged after 4 rounds of biopanning against the U87MG glioblastoma cell line. The most abundant phage clone VTW, expressing a sequence of VTWTPQAWFQWV, bound to U87MG cells 700-fold more efficiently than the original unselected library. The VTW phage also bound strongly to other human glioma cell lines, including H4, SW1088 and SW1783, but very weakly to normal human astrocytes and SV40-immortalized human astroglial cells. When compared to other non-glial tumor cells, the phage showed 400- to 1400-fold higher binding efficiency for U87MG cells. After linked to positively charged lysine peptides, the VTW peptide became water soluble and was able to deliver biologically active, hydrophilic beta-galactosidase into U87MG cells, with up to 90% of the cells being stained intensively blue. This peptide carrier did not show obvious protein delivery activities in the human astrocytes. Our results provide a proof of principle to the concept that peptides identified through phage display technology can be used to develop protein carriers that are capable of mediating intracellular delivery of hydrophilic macromolecules in a tumor cell-specific manner.


Frontiers in Immunology | 2014

Age-Dependent Immune Events during HBV Infection from Birth to Adulthood: An Alternative Interpretation.

Antonio Bertoletti; Michelle Hong

Immune responses change during the life of an individual. While this concept has been well accepted for adaptive immunity, only recently it is becoming clear that the innate immune responses also acquire distinct features in different phases of life. We believe that this concept can offer a different interpretation of the pathological manifestations that can be observed in HBV-infected subjects during the patient’s life. Here, we will review the age-related immunopathological features of HBV infection and discuss how the different virological and clinical manifestations might be linked to the developmental pathway of the immune system from newborns to adults. We will discuss how the age of patients can affect the degree of inflammatory responses, but not the levels of antiviral specific immunity. We then propose that the different clinical manifestations occurring during the natural history of HBV infection are related to the host ability to trigger an inflammatory immune response.


OncoImmunology | 2015

Tumor stroma and chemokines control T-cell migration into melanoma following Temozolomide treatment

Kar Wai Tan; Maximilien Evrard; Muly Tham; Michelle Hong; Caleb Huang; Masashi Kato; Armelle Prévost-Blondel; Emmanuel Donnadieu; Lai Guan Ng; Jean-Pierre Abastado

The infiltration of T lymphocytes within tumors is associated with better outcomes in cancer patients, yet current understanding of factors that influence T-lymphocyte infiltration into tumors remains incomplete. In our study, Temozolomide (TMZ), a chemotherapeutic drug used to treat metastatic melanoma, induced T-cell infiltration into transplanted melanoma and into genitourinary (GU) tumors in mice developing spontaneous melanoma. In contrast, TMZ treatment did not increase T-cell infiltration into cutaneous tumors, despite similar increases in the expression of the (C-X-C) chemokines CXCL9 and CXCL10 in all sites after TMZ exposure. Our findings reveal that the matrix architecture of the GU tumor stroma, and its ability to present CXCL9 and CXCL10 after TMZ treatment played a key role in favouring T-cell infiltration. We subsequently demonstrate that modifications of these key elements by combined collagenase and TMZ treatment induced T-cell infiltration into skin tumors. T cells accumulating within GU tumors after TMZ treatment exhibited T helper type-1 effector and cytolytic functional phenotypes, which are important for control of tumor growth. Our findings highlight the importance of the interaction between tumor stroma and chemokines in influencing T-cell migration into tumors, thereby impacting immune control of tumor growth. This knowledge will aid the development of strategies to promote T-cell infiltration into cancerous lesions and has the potential to markedly improve treatment outcomes.

Collaboration


Dive into the Michelle Hong's collaboration.

Top Co-Authors

Avatar

Antonio Bertoletti

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Abastado

Singapore Immunology Network

View shared research outputs
Top Co-Authors

Avatar

A. Tan-Garcia

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Adeline Chia

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony T. Tan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Charles-Antoine Dutertre

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge