Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle J. Farquhar is active.

Publication


Featured researches published by Michelle J. Farquhar.


Hepatology | 2007

Hepatitis C virus cell‐cell transmission in hepatoma cells in the presence of neutralizing antibodies

Jennifer M. Timpe; Zania Stamataki; Adam Jennings; Ke Hu; Michelle J. Farquhar; Helen J. Harris; Anne Schwarz; Isabelle Desombere; Geert Leroux Roels; Peter Balfe; Jane A. McKeating

Hepatitis C virus (HCV) infection of Huh‐7.5 hepatoma cells results in focal areas of infection where transmission is potentiated by cell‐cell contact. To define route(s) of transmission, HCV was allowed to infect hepatoma cells in the presence or absence of antibodies that neutralize cell‐free virus infectivity. Neutralizing antibodies (nAbs) reduced cell‐free virus infectivity by >95% and had minimal effect(s) on the frequency of infected cells in the culture. To assess whether cell‐cell transfer of viral infectivity occurs, HCV‐infected cells were cocultured with fluorescently labeled naïve cells in the presence or absence of nAbs. Enumeration by flow cytometry demonstrated cell‐cell transfer of infectivity in the presence or absence of nAbs and immunoglobulins from HCV+ patients. The host cell molecule CD81 and the tight junction protein Claudin 1 (CLDN1) are critical factors defining HCV entry. Soluble CD81 and anti‐CD81 abrogated cell‐free infection of Huh‐7.5 and partially inhibited cell‐cell transfer of infection. CD81‐negative HepG2 hepatoma cells were resistant to cell‐free virus infection but became infected after coculturing with JFH‐infected cells in the presence of nAb, confirming that CD81‐independent routes of cell‐cell transmission exist. Further experiments with 293T and 293T‐CLDN1 targets suggested that cell‐cell transmission is dependent on CLDN1 expression. Conclusion: These data suggest that HCV can transmit in vitro by at least two routes, cell‐free virus infection and direct transfer between cells, with the latter offering a novel route for evading nAbs. (HEPATOLOGY 2007.)


Journal of Virology | 2008

CD81 and Claudin 1 Coreceptor Association: Role in Hepatitis C Virus Entry

Helen J. Harris; Michelle J. Farquhar; Christopher J. Mee; Christopher Davis; Gary M. Reynolds; Adam Jennings; Ke Hu; Fei Yuan; HongKui Deng; Stefan G. Hubscher; Jang H. Han; Peter Balfe; Jane A. McKeating

ABSTRACT Hepatitis C virus (HCV) is an enveloped positive-stranded RNA hepatotropic virus. HCV pseudoparticles infect liver-derived cells, supporting a model in which liver-specific molecules define HCV internalization. Three host cell molecules have been reported to be important entry factors or receptors for HCV internalization: scavenger receptor BI, the tetraspanin CD81, and the tight junction protein claudin-1 (CLDN1). None of the receptors are uniquely expressed within the liver, leading us to hypothesize that their organization within hepatocytes may explain receptor activity. Since CD81 and CLDN1 act as coreceptors during late stages in the entry process, we investigated their association in a variety of cell lines and human liver tissue. Imaging techniques that take advantage of fluorescence resonance energy transfer (FRET) to study protein-protein interactions have been developed. Aequorea coerulescens green fluorescent protein- and Discosoma sp. red-monomer fluorescent protein-tagged forms of CD81 and CLDN1 colocalized, and FRET occurred between the tagged coreceptors at comparable frequencies in permissive and nonpermissive cells, consistent with the formation of coreceptor complexes. FRET occurred between antibodies specific for CD81 and CLDN1 bound to human liver tissue, suggesting the presence of coreceptor complexes in liver tissue. HCV infection and treatment of Huh-7.5 cells with recombinant HCV E1-E2 glycoproteins and anti-CD81 monoclonal antibody modulated homotypic (CD81-CD81) and heterotypic (CD81-CLDN1) coreceptor protein association(s) at specific cellular locations, suggesting distinct roles in the viral entry process.


Journal of Biological Chemistry | 2010

Claudin Association with CD81 Defines Hepatitis C Virus Entry

Helen J. Harris; Christopher Davis; Jonathan G. L. Mullins; Ke Hu; Margaret Goodall; Michelle J. Farquhar; Christopher J. Mee; Kitty McCaffrey; Stephen Young; Heidi E. Drummer; Peter Balfe; Jane A. McKeating

Viruses initiate infection by attaching to molecules or receptors at the cell surface. Hepatitis C virus (HCV) enters cells via a multistep process involving tetraspanin CD81, scavenger receptor class B member I, and the tight junction proteins Claudin-1 and Occludin. CD81 and scavenger receptor class B member I interact with HCV-encoded glycoproteins, suggesting an initial role in mediating virus attachment. In contrast, there are minimal data supporting Claudin-1 association with HCV particles, raising questions as to its role in the virus internalization process. In the present study we demonstrate a relationship between receptor active Claudins and their association and organization with CD81 at the plasma membrane by fluorescence resonance energy transfer and stoichiometric imaging methodologies. Mutation of residues 32 and 48 in the Claudin-1 first extracellular loop ablates CD81 association and HCV receptor activity. Furthermore, mutation of the same residues in the receptor-inactive Claudin-7 molecule enabled CD81 complex formation and virus entry, demonstrating an essential role for Claudin-CD81 complexes in HCV infection. Importantly, Claudin-1 associated with CD81 at the basolateral membrane of polarized HepG2 cells, whereas tight junction-associated pools of Claudin-1 demonstrated a minimal association with CD81. In summary, we demonstrate an essential role for Claudin-CD81 complexes in HCV infection and their localization at the basolateral surface of polarized hepatoma cells, consistent with virus entry into the liver via the sinusoidal blood and association with basal expressed forms of the receptors.


Journal of Virology | 2007

Scavenger Receptor BI and BII Expression Levels Modulate Hepatitis C Virus Infectivity

Joe Grove; Thierry Huby; Zania Stamataki; Thomas Vanwolleghem; Philip Meuleman; Michelle J. Farquhar; Anne Schwarz; Martine Moreau; James S. Owen; Geert Leroux-Roels; Peter Balfe; Jane A. McKeating

ABSTRACT Hepatitis C virus (HCV) enters cells via a pH- and clathrin-dependent endocytic pathway. Scavenger receptor BI (SR-BI) and CD81 are important entry factors for HCV internalization into target cells. The SR-BI gene gives rise to at least two mRNA splice variants, SR-BI and SR-BII, which differ in their C termini. SR-BI internalization remains poorly understood, but SR-BII is reported to endocytose via a clathrin-dependent pathway, making it an attractive target for HCV internalization. We demonstrate that HCV soluble E2 can interact with human SR-BI and SR-BII. Increased expression of SR-BI and SR-BII in the Huh-7.5 hepatoma cell line enhanced HCV strain J6/JFH and JFH infectivity, suggesting that endogenous levels of these receptors limit infection. Elevated expression of SR-BI, but not SR-BII, increased the rate of J6/JFH infection, which may reflect altered intracellular trafficking of the splice variants. In human plasma, HCV particles have been reported to be complexed with lipoproteins, suggesting an indirect interaction of the virus with SR-BI and other lipoprotein receptors. Plasma from J6/JFH-infected uPA-SCID mice transplanted with human hepatocytes demonstrates an increased infectivity for SR-BI/II-overexpressing Huh-7.5 cells. Plasma-derived J6/JFH infectivity was inhibited by an anti-E2 monoclonal antibody, suggesting that plasma virus interaction with SR-BI was glycoprotein dependent. Finally, anti-SR-BI antibodies inhibited the infectivity of cell culture- and plasma-derived J6/JFH, suggesting a critical role for SR-BI/II in HCV infection.


Journal of Virology | 2006

Diverse CD81 proteins support hepatitis C virus infection.

Mike Flint; Thomas von Hahn; Jie Zhang; Michelle J. Farquhar; Christopher T. Jones; Peter Balfe; Charles M. Rice; Jane A. McKeating

ABSTRACT Hepatitis C virus (HCV) entry is dependent on CD81. To investigate whether the CD81 sequence is a determinant of HCV host range, we expressed a panel of diverse CD81 proteins and tested their ability to interact with HCV. CD81 large extracellular loop (LEL) sequences were expressed as recombinant proteins; the human and, to a low level, the African green monkey sequences bound soluble HCV E2 (sE2) and inhibited infection by retrovirus pseudotype particles bearing HCV glycoproteins (HCVpp). In contrast, mouse or rat CD81 proteins failed to bind sE2 or to inhibit HCVpp infection. However, CD81 proteins from all species, when expressed in HepG2 cells, conferred susceptibility to infection by HCVpp and cell culture-grown HCV to various levels, with the rat sequence being the least efficient. Recombinant human CD81 LEL inhibited HCVpp infectivity only if present during the virus-cell incubation, consistent with a role for CD81 after virus attachment. Amino acid changes that abrogate sE2 binding (I182F, N184Y, and F186S, alone or in combination) were introduced into human CD81. All three amino acid changes in human CD81 resulted in a molecule that still supported HCVpp infection, albeit with reduced efficiency. In summary, there is a remarkable plasticity in the range of CD81 sequences that can support HCV entry, suggesting that CD81 polymorphism may contribute to, but alone does not define, the HCV susceptibility of a species. In addition, the capacity to support viral entry is only partially reflected by assays measuring sE2 interaction with recombinant or full-length CD81 proteins.


Journal of Virology | 2009

Polarization Restricts Hepatitis C Virus Entry into HepG2 Hepatoma Cells

Christopher J. Mee; Helen J. Harris; Michelle J. Farquhar; Garrick K. Wilson; Gary M. Reynolds; Christopher Davis; Sven C.D. van IJzendoorn; Peter Balfe; Jane A. McKeating

ABSTRACT The primary reservoir for hepatitis C virus (HCV) replication is believed to be hepatocytes, which are highly polarized with tight junctions (TJ) separating their basolateral and apical domains. HepG2 cells develop polarity over time, resulting in the formation and remodeling of bile canalicular (BC) structures. HepG2 cells expressing CD81 provide a model system to study the effects of hepatic polarity on HCV infection. We found an inverse association between HepG2-CD81 polarization and HCV pseudoparticle entry. As HepG2 cells polarize, discrete pools of claudin-1 (CLDN1) at the TJ and basal/lateral membranes develop, consistent with the pattern of receptor staining observed in liver tissue. The TJ and nonjunctional pools of CLDN1 show an altered association with CD81 and localization in response to the PKA antagonist Rp-8-Br-cyclic AMPs (cAMPs). Rp-8-Br-cAMPs reduced CLDN1 expression at the basal membrane and inhibited HCV infection, supporting a model where the nonjunctional pools of CLDN1 have a role in HCV entry. Treatment of HepG2 cells with proinflammatory cytokines, tumor necrosis factor alpha and gamma interferon, perturbed TJ integrity but had minimal effect(s) on cellular polarity and HCV infection, suggesting that TJ integrity does not limit HCV entry into polarized HepG2 cells. In contrast, activation of PKC with phorbol ester reduced TJ integrity, ablated HepG2 polarity, and stimulated HCV entry. Overall, these data show that complex hepatocyte-like polarity alters CLDN1 localization and limits HCV entry, suggesting that agents which disrupt hepatocyte polarity may promote HCV infection and transmission within the liver.


Journal of Virology | 2008

Protein Kinase A-Dependent Step(s) in Hepatitis C Virus Entry and Infectivity

Michelle J. Farquhar; Helen J. Harris; Mandy Diskar; Sarah Jones; Christopher J. Mee; Søren Nielsen; Claire L. Brimacombe; Sonia Molina; Geoffrey L. Toms; Patrick Maurel; John Howl; Friedrich W. Herberg; Sven C.D. van IJzendoorn; Peter Balfe; Jane A. McKeating

ABSTRACT Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA substrates, supporting a model where infection activates PKA in a cAMP-dependent manner to promote virus release and transmission.


Journal of Virology | 2012

Hepatitis C Virus Induces CD81 and Claudin-1 Endocytosis

Michelle J. Farquhar; Ke Hu; Helen J. Harris; Christopher Davis; Claire L. Brimacombe; Sarah J. Fletcher; Thomas F. Baumert; Joshua Z. Rappoport; Peter Balfe; Jane A. McKeating

ABSTRACT Hepatitis C virus (HCV) leads to progressive liver disease and hepatocellular carcinoma. Current treatments are only partially effective, and new therapies targeting viral and host pathways are required. Virus entry into a host cell provides a conserved target for therapeutic intervention. Tetraspanin CD81, scavenger receptor class B member I, and the tight-junction proteins claudin-1 and occludin have been identified as essential entry receptors. Limited information is available on the role of receptor trafficking in HCV entry. We demonstrate here that anti-CD81 antibodies inhibit HCV infection at late times after virus internalization, suggesting a role for intracellular CD81 in HCV infection. Several tetraspanins have been reported to internalize via motifs in their C-terminal cytoplasmic domains; however, CD81 lacks such motifs, leading several laboratories to suggest a limited role for CD81 endocytosis in HCV entry. We demonstrate CD81 internalization via a clathrin- and dynamin-dependent process, independent of its cytoplasmic domain, suggesting a role for associated partner proteins in regulating CD81 trafficking. Live cell imaging demonstrates CD81 and claudin-1 coendocytosis and fusion with Rab5 expressing endosomes, supporting a role for this receptor complex in HCV internalization. Receptor-specific antibodies and HCV particles increase CD81 and claudin-1 endocytosis, supporting a model wherein HCV stimulates receptor trafficking to promote particle internalization.


Gastroenterology | 2010

Hepatitis C virus infection reduces hepatocellular polarity in a vascular endothelial growth factor-dependent manner.

Christopher J. Mee; Michelle J. Farquhar; Helen J. Harris; Ke Hu; Asif Ahmed; Patrick Maurel; Roy Bicknell; Peter Balfe; Jane A. McKeating

BACKGROUND & AIMS Hepatitis C virus (HCV) infection leads to progressive liver disease, frequently culminating in fibrosis and hepatocellular carcinoma. The mechanisms underlying liver injury in chronic hepatitis C are poorly understood. This study evaluated the role of vascular endothelial growth factor (VEGF) in hepatocyte polarity and HCV infection. METHODS We used polarized hepatoma cell lines and the recently described infectious HCV Japanese fulminant hepatitis (JFH)-1 cell culture system to study the role of VEGF in regulating hepatoma permeability and HCV infection. RESULTS VEGF negatively regulates hepatocellular tight junction integrity and cell polarity by a novel VEGF receptor 2-dependent pathway. VEGF reduced hepatoma tight junction integrity, induced a re-organization of occludin, and promoted HCV entry. Conversely, inhibition of hepatoma expressed VEGF with the receptor kinase inhibitor sorafenib or with neutralizing anti-VEGF antibodies promoted polarization and inhibited HCV entry, showing an autocrine pathway. HCV infection of primary hepatocytes or hepatoma cell lines promoted VEGF expression and reduced their polarity. Importantly, treatment of HCV-infected cells with VEGF inhibitors restored their ability to polarize, showing a VEGF-dependent pathway. CONCLUSIONS Hepatic polarity is critical to normal liver physiology. HCV infection promotes VEGF expression that depolarizes hepatoma cells, promoting viral transmission and lymphocyte migration into the parenchyma that may promote hepatocyte injury.


Gastroenterology | 2010

Hepatitis C Virus Infection of Neuroepithelioma Cell Lines

Nicola F. Fletcher; Jian Ping Yang; Michelle J. Farquhar; Ke Hu; Christopher Davis; Qiuchen He; Kimberly A. Dowd; Stuart C. Ray; Sophie E. Krieger; Johan Neyts; Thomas F. Baumert; Peter Balfe; Jane A. McKeating; Flossie Wong-Staal

BACKGROUND & AIMS Hepatitis C virus (HCV) establishes chronic infections in 3% of the worlds population. Infection leads to progressive liver disease; hepatocytes are the major site of viral replication in vivo. However, chronic infection is associated with a variety of extrahepatic syndromes, including central nervous system (CNS) abnormalities. We therefore screened a series of neural and brain-derived cell lines for their ability to support HCV entry and replication. METHODS We used a panel of neural-derived cell lines, HCV pseudoparticles (HCVpp), and an infectious, HCV JFH-1 cell-culture system (HCVcc) to assess viral tropism. RESULTS Two independently derived neuroepithelioma cell lines (SK-N-MC and SK-PN-DW) permitted HCVpp entry. In contrast, several neuroblastoma, glioma, and astrocytoma cell lines were refractory to HCVpp infection. HCVcc infected the neuroepithelioma cell lines and established a productive infection. Permissive neuroepithelioma cells expressed CD81, scavenger receptor BI (SR-BI), and the tight junction proteins Claudin-1 (CLDN1) and occludin, whereas nonpermissive neural cell lines lacked CLDN1 and, in some cases, SR-BI. HCVpp infection of the neuroepithelioma cells was neutralized by antibodies to CD81, SR-BI, CLDN1, and HCV E2. Furthermore, anti-CD81, interferon, and the anti-NS3 protease inhibitor VX-950 significantly reduced HCVcc infection of neuroepithelioma and hepatoma cells. CONCLUSIONS Neuroepithelioma-derived cell lines express functional receptors that support HCV entry at levels comparable to those of hepatoma cells. HCV infection in vitro is not restricted to hepatic-derived cells, so HCV might infect cells of the CNS in vivo.

Collaboration


Dive into the Michelle J. Farquhar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Hu

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary M. Reynolds

National Institute for Health Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge