Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle J. Hooth is active.

Publication


Featured researches published by Michelle J. Hooth.


Environmental Health Perspectives | 2009

Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure.

Matthew D. Stout; Ronald A. Herbert; Grace E. Kissling; Bradley J. Collins; Gregory S. Travlos; Kristine L. Witt; Ronald L. Melnick; Kamal M. Abdo; David E. Malarkey; Michelle J. Hooth

Background Hexavalent chromium [Cr(VI)] is a human carcinogen after inhalation exposure. Humans also ingest Cr(VI) from contaminated drinking water and soil; however, limited data exist on the oral toxicity and carcinogenicity of Cr(VI). Objective We characterized the chronic oral toxicity and carcinogenicity of Cr(VI) in rodents. Methods The National Toxicology Program (NTP) conducted 2-year drinking water studies of Cr(VI) (as sodium dichromate dihydrate) in male and female F344/N rats and B6C3F1 mice. Results Cr(VI) exposure resulted in increased incidences of rare neoplasms of the squamous epithelium that lines the oral cavity (oral mucosa and tongue) in male and female rats, and of the epithelium lining the small intestine in male and female mice. Cr(VI) exposure did not affect survival but resulted in reduced mean body weights and water consumption, due at least in part to poor palatability of the dosed water. Cr(VI) exposure resulted in transient microcytic hypochromic anemia in rats and microcytosis in mice. Nonneoplastic lesions included diffuse epithelial hyperplasia in the duodenum and jejunum of mice and histiocytic cell infiltration in the duodenum, liver, and mesenteric and pancreatic lymph nodes of rats and mice. Conclusions Cr(VI) was carcinogenic after administration in drinking water to male and female rats and mice.


Food and Chemical Toxicology | 2009

Chronic toxicity and carcinogenicity studies of chromium picolinate monohydrate administered in feed to F344/N rats and B6C3F1 mice for 2 years

Matthew D. Stout; Abraham Nyska; Bradley J. Collins; Kristine L. Witt; Grace E. Kissling; David E. Malarkey; Michelle J. Hooth

Trivalent chromium (Cr(III)) has been proposed to be an essential element, which may increase sensitivity to insulin and thus participate in carbohydrate and lipid metabolism. Humans ingest Cr(III) both as a natural dietary constituent and in dietary supplements taken for weight loss and antidiabetic effects. Chromium picolinate (CP), a widely used supplement, contains Cr(III) chelated with three molecules of picolinic acid and was formulated in an attempt to improve the absorption of Cr(III). In order to examine the potential for CP to induce chronic toxicity and carcinogenicity, the NTP conducted studies of the monohydrate form (CPM) in groups of 50 male and female F344/N rats and B6C3F1 mice exposed in feed to concentrations of 0, 2000, 10,000 or 50,000 ppm for 2 years; exposure concentrations were selected following review of the data from NTP 3-month toxicity studies. Exposure to CPM did not induce biologically significant changes in survival, body weight, feed consumption, or non-neoplastic lesions in rats or mice. In male rats, a statistically significant increase in the incidence of preputial gland adenoma at 10,000 ppm was considered an equivocal finding. CPM was not carcinogenic to female rats or to male or female mice.


Toxicological Sciences | 2010

Exposure to Hexavalent Chromium Resulted in Significantly Higher Tissue Chromium Burden Compared With Trivalent Chromium Following Similar Oral Doses to Male F344/N Rats and Female B6C3F1 Mice

Bradley J. Collins; Matthew D. Stout; Keith E. Levine; Grace E. Kissling; Ronald L. Melnick; Timothy R. Fennell; Kamal M. Abdo; John B. Pritchard; Reshan A. Fernando; Leo T. Burka; Michelle J. Hooth

In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight(3/4) (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI).


bioRxiv | 2016

Report of Partial findings from the National Toxicology Program Carcinogenesis Studies of Cell Phone Radiofrequency Radiation in Hsd: Sprague Dawley® SD rats (Whole Body Exposure)

Michael E. Wyde; Mark F. Cesta; Chad Blystone; Susan A. Elmore; Paul M. D. Foster; Michelle J. Hooth; Grace E. Kissling; David E. Malarkey; Robert C. Sills; Matthew D. Stout; Nigel J. Walker; Kristine L. Witt; Mary S. Wolfe; John R. Bucher

The U.S. National Toxicology Program (NTP) has carried out extensive rodent toxicology and carcinogenesis studies of radiofrequency radiation (RFR) at frequencies and modulations used in the U.S. telecommunications industry. This report presents partial findings from these studies. The occurrences of two tumor types in male Harlan Sprague Dawley rats exposed to RFR, malignant gliomas in the brain and schwannomas of the heart, were considered of particular interest and are the subject of this report. The findings in this report were reviewed by expert peer reviewers selected by the NTP and National Institutes of Health (NIH). These reviews and responses to comments are included as appendices to this report, and revisions to the current document have incorporated and addressed these comments. When the studies are completed, they will undergo additional peer review before publication in full as part of the NTPs Toxicology and Carcinogenesis Technical Reports Series. No portion of this work has been submitted for publication in a scientific journal. Supplemental information in the form of four additional manuscripts has or will soon be submitted for publication. These manuscripts describe in detail the designs and performance of the RFR exposure system, the dosimetry of RFR exposures in rats and mice, the results to a series of pilot studies establishing the ability of the animals to thermoregulate during RFR exposures, and studies of DNA damage. (1) Capstick M, Kuster N, Kuhn S, Berdinas-Torres V, Wilson P, Ladbury J, Koepke G, McCormick D, Gauger J, and Melnick R. A radio frequency radiation reverberation chamber exposure system for rodents; (2) Yijian G, Capstick M, McCormick D, Gauger J, Horn T, Wilson P, Melnick RL, and Kuster N. Life time dosimetric assessment for mice and rats exposed to cell phone radiation; (3) Wyde ME, Horn TL, Capstick M, Ladbury J, Koepke G, Wilson P, Stout MD, Kuster N, Melnick R, Bucher JR, and McCormick D. Pilot studies of the National Toxicology Program’s cell phone radiofrequency radiation reverberation chamber exposure system; (4) Smith-Roe SL, Wyde ME, Stout MD, Winters J, Hobbs CA, Shepard KG, Green A, Kissling GE, Tice RR, Bucher JR, and Witt KL. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. SUMMARY The purpose of this communication is to report partial findings from a series of radiofrequency radiation (RFR) cancer studies in rats performed under the auspices of the U.S. National Toxicology Program (NTP).1 This report contains peer-reviewed, neoplastic and hyperplastic findings only in the brain and heart of Hsd:Sprague Dawley® SD® (HSD) rats exposed to RFR starting in utero and continuing throughout their lifetimes. These studies found low incidences of malignant gliomas in the brain and schwannomas in the heart of male rats exposed to RFR of the two types [Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM)] currently used in U.S. wireless networks. Potentially preneoplastic lesions were also observed in the brain and heart of male rats exposed to RFR. The review of partial study data in this report has been prompted by several factors. Given the widespread global usage of mobile communications among users of all ages, even a very small increase in the incidence of disease resulting from exposure to RFR could have broad implications for public health. There is a high level of public and media interest regarding the safety of cell phone RFR and the specific results of these NTP studies. Lastly, the tumors in the brain and heart observed at low incidence in male rats exposed to GSM-and CDMA-modulated cell phone RFR in this study are of a type similar to tumors observed in some epidemiology studies of cell phone use. These findings appear to support the International Agency for Research on Cancer (IARC) conclusions regarding the possible carcinogenic potential of RFR.2 It is important to note that this document reviews only the findings from the brain and heart and is not a complete report of all findings from the NTP’s studies. Additional data from these studies in Hsd:Sprague Dawley® SD® (Harlan) rats and similar studies conducted in B6C3F1/N mice are currently under evaluation and will be reported together with the current findings in two forthcoming NTP Technical Reports.


Toxicologic Pathology | 2013

Mechanistic Insights from the NTP Studies of Chromium

Kristine L. Witt; Matthew D. Stout; Ronald A. Herbert; Gregory S. Travlos; Grace E. Kissling; Bradley J. Collins; Michelle J. Hooth

Hexavalent chromium (Cr(VI)) is a contaminant of water and soil and is a human lung carcinogen. Trivalent chromium (Cr(III)), a proposed essential element, is ingested by humans in the diet and in dietary supplements such as chromium picolinate (CP). The National Toxicology Program (NTP) demonstrated that Cr(VI) is also carcinogenic in rodents when administered in drinking water as sodium dichromate dihydrate (SDD), inducing neoplasms of the oral cavity and small intestine in rats and mice, respectively. In contrast, there was no definitive evidence of toxicity or carcinogenicity following exposure to Cr(III) administered in feed as CP monohydrate (CPM). Cr(VI) readily enters cells via nonspecific anion channels, in contrast to Cr(III), which cannot easily pass through the cell membrane. Extracellular reduction of Cr(VI) to Cr(III), which occurs primarily in the stomach, is considered a mechanism of detoxification, while intracellular reduction is thought to be a mechanism of genotoxicity and carcinogenicity. Tissue distribution studies in additional groups of male rats and female mice demonstrated higher Cr concentrations in tissues following exposure to Cr(VI) compared to controls and Cr(III) exposure at a similar external dose, indicating that some of the Cr(VI) escaped gastric reduction and was distributed systemically. The multiple potential pathways of Cr-induced genotoxicity will be discussed.


Toxicology | 2015

Comparative toxicity and carcinogenicity of soluble and insoluble cobalt compounds.

Mamta Behl; Matthew D. Stout; Ronald A. Herbert; Jeffrey A. Dill; Gregory L. Baker; Barry K. Hayden; Joseph H. Roycroft; John R. Bucher; Michelle J. Hooth

Occupational exposure to cobalt is of widespread concern due to its use in a variety of industrial processes and the occurrence of occupational disease. Due to the lack of toxicity and carcinogenicity data following exposure to cobalt, and questions regarding bioavailability following exposure to different forms of cobalt, the NTP conducted two chronic inhalation exposure studies in rats and mice, one on soluble cobalt sulfate heptahydrate, and a more recent study on insoluble cobalt metal. Herein, we compare and contrast the toxicity profiles following whole-body inhalation exposures to these two forms of cobalt. In general, both forms were genotoxic in the Salmonella T98 strain in the absence of effects on micronuclei. The major sites of toxicity and carcinogenicity in both chronic inhalation studies were the respiratory tract in rats and mice, and the adrenal gland in rats. In addition, there were distinct sites of toxicity and carcinogenicity noted following exposure to cobalt metal. In rats, carcinogenicity was observed in the blood, and pancreas, and toxicity was observed in the testes of rats and mice. Taken together, these findings suggest that both forms of cobalt, soluble and insoluble, appear to be multi-site rodent carcinogens following inhalation exposure.


Toxicology | 2012

Repeated dose toxicity and relative potency of 1,2,3,4,6,7-hexachloronaphthalene (PCN 66) 1,2,3,5,6,7-hexachloronaphthalene (PCN 67) compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for induction of CYP1A1, CYP1A2 and thymic atrophy in female Harlan Sprague-Dawley rats

Michelle J. Hooth; Abraham Nyska; Laurene M. Fomby; Daphne Vasconcelos; Molly Vallant; Michael J. DeVito; Nigel J. Walker

In this study we assessed the relative toxicity and potency of the chlorinated naphthalenes 1,2,3,4,6,7-hexachloronaphthalene (PCN 66) and 1,2,3,5,6,7-hexachloronaphthalene (PCN 67) relative to that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Chemicals were administered in corn oil:acetone (99:1) by gavage to female Harlan Sprague-Dawley rats at dosages of 0 (vehicle), 500, 1500, 5000, 50,000 and 500,000 ng/kg (PCN 66 and PCN 67) and 1, 3, 10, 100, and 300 ng/kg (TCDD) for 2 weeks. Histopathologic changes were observed in the thymus, liver and lung of TCDD treated animals and in the liver and thymus of PCN treated animals. Significant increases in CYP1A1 and CYP1A2 associated enzyme activity were observed in all animals exposed to TCDD, PCN 66 and PCN 67. Dose response modeling of CYP1A1, CYP1A2 and thymic atrophy gave ranges of estimated relative potencies, as compared to TCDD, of 0.0015-0.0072, for PCN 66 and 0.00029-0.00067 for PCN 67. Given that PCN 66 and PCN 67 exposure resulted in biochemical and histopathologic changes similar to that seen with TCDD, this suggests that they should be included in the WHO toxic equivalency factor (TEF) scheme, although the estimated relative potencies indicate that these hexachlorinated naphthalenes should not contribute greatly to the overall human body burden of dioxin-like activity.


Drug Metabolism and Disposition | 2009

Characterization of the Disposition and Toxicokinetics of N-Butylpyridinium Chloride in Male F-344 Rats and Female B6C3F1 Mice and Its Transport by Organic Cation Transporter 2

Yaofeng Cheng; Stephen H. Wright; Michelle J. Hooth; I. G. Sipes

Studies were conducted to characterize the effect of dose and route of administration on the disposition of N-butylpyridinium chloride (NBuPy-Cl), an ionic liquid with solvent properties. Urine was the major route of NBuPy-Cl excretion after intravenous (5 mg/kg), single oral (0.5, 5, or 50 mg/kg), or repeated oral (50 mg/kg/day, 5 days) administration to male F-344 rats and single oral (50 mg/kg) administration to female B6C3F1 mice. Depending on the vehicle, absorption after dermal application (5 mg/kg, 125 μg/cm2) was 10 to 35% at 96 h. After the single intravenous dose, the blood concentration of NBuPy-Cl decreased in a biphasic manner with an elimination half-life of 2.2 h and a clearance of 7 ml/min. After single oral administration of NBuPy-Cl (50 mg/kg), maximum blood concentration was reached at 1.3 h, and the bioavailability was determined to be 47% at 6 h based on the blood toxicokinetics and 67% at 72 h based on urinary excretion. In all the urine and blood samples, only the parent compound was detected. Coadministration of NBuPy-Cl and inulin (by intravenous injection) revealed that the clearance of NBuPy-Cl exceeded the rat glomerular filtration rate. After incubation with Chinese hamster ovary cells expressing human organic cation transporter 2 (hOCT2), NBuPy-Cl was transported effectively (Kt = 18 μM), and also a potent inhibitor of hOCT2 mediated tetraethylammonium transport (IC50 = 2.3 μM). In summary, NBuPy-Cl is partially absorbed from the gastrointestinal tract and eliminated rapidly in the urine as parent compound most likely by renal glomerular filtration and OCT2-mediated secretion.


Toxicologic Pathology | 2010

Urethral carcinoma and hyperplasia in male and female B6C3F1 mice treated with 3,3′,4,4′- Tetrachloroazobenzene (TCAB)

Bhanu Singh; Abraham Nyska; Grace E. Kissling; Warren Lieuallen; S. L. Johansson; David E. Malarkey; Michelle J. Hooth

B6C3F1 mice chronically exposed to 3,3′,4,4′-tetrachloroazobenzene (TCAB), a contaminant of dichloroaniline-derived herbicides, developed a number of neoplastic and nonneoplastic lesions, including carcinoma of the urinary tract. Groups of fifty male and fifty female B6C3F1 mice were exposed by gavage to TCAB at dose levels of 0, 3, 10, and 30 mg/kg five days a week for two years. Control animals received corn oil:acetone (99:1) vehicle. Decreased survival of male mice in the mid-dose group and of male and female mice in the high-dose groups was related mainly to the occurrence of urethral transitional cell (urothelial) carcinoma and resulting urinary obstruction. Increased urethral transitional cell carcinomas were seen in all treated male groups in a dose-related manner as well as in the females treated with 30 mg/kg TCAB. Administration of TCAB was also associated with increased transitional cell hyperplasia of the urethra. Most nonneoplastic lesions of the urogenital tract were considered secondary to local invasion and urinary obstruction by the urethral transitional cell carcinomas. The mechanism of tumor induction is uncertain, but the high frequency of tumors in the proximal urethra of male mice suggests that the neoplasms result from the exposure of a susceptible population of urothelial cells to a carcinogenic metabolite of TCAB.


Toxicology and Applied Pharmacology | 2013

Toxicokinetics of α-thujone following intravenous and gavage administration of α-thujone or α- and β-thujone mixture in male and female F344/N rats and B6C3F1 mice

Suramya Waidyanatha; Jerry D. Johnson; S. Peter Hong; Veronica G. Robinson; Seth Gibbs; Steven W. Graves; Michelle J. Hooth; Cynthia S. Smith

Plants containing thujone have widespread use and hence have significant human exposure. α-Thujone caused seizures in rodents following gavage administration. We investigated the toxicokinetics of α-thujone in male and female F344/N rats and B6C3F1 mice following intravenous and gavage administration of α-thujone or a mixture of α- and β-thujone (which will be referred to as α,β-thujone). Absorption of α-thujone following gavage administration was rapid without any dose-, species-, sex- or test article-related effect. Absolute bioavailability of α-thujone following administration of α-thujone or α,β-thujone was generally higher in rats than in mice. In rats, females had higher bioavailability than males following administration of either test article although a sex difference was not observed in mice. Cmax and AUC∞ increased greater than proportional to the dose in female rats following administration of α-thujone and in male and female mice following administration of α,β-thujone suggesting possible saturation of elimination kinetics with increasing dose. Dose-adjusted AUC∞ for male and female rats was 5- to 15-fold and 3- to 24-fold higher than mice counterparts following administration of α-thujone and α,β-thujone, respectively (p-value<0.0001 for all comparisons). Following both intravenous and gavage administration, α-thujone was distributed to the brains of rats and mice with females, in general, having higher brain:plasma ratios than males. These data are in support of the observed toxicity of α-thujone and α,β-thujone where females were more sensitive than males of both species to α-thujone-induced neurotoxicity. In general there was no difference in toxicokinetics between test articles when normalized to α-thujone concentration.

Collaboration


Dive into the Michelle J. Hooth's collaboration.

Top Co-Authors

Avatar

Grace E. Kissling

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Stout

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bradley J. Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David E. Malarkey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristine L. Witt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ronald A. Herbert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Bucher

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kamal M. Abdo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge