Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle J. Yoo is active.

Publication


Featured researches published by Michelle J. Yoo.


Journal of Separation Science | 2009

CHARACTERIZATION OF DRUG-PROTEIN INTERACTIONS IN BLOOD USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

David S. Hage; Abby J. Jackson; Matthew R. Sobansky; John E. Schiel; Michelle J. Yoo; K.S. Joseph

The binding of drugs with proteins in blood, serum, or plasma is an important process in determining the activity, distribution, rate of excretion, and toxicity of drugs in the body. High-performance affinity chromatography (HPAC) has received a great deal of interest as a means for studying these interactions. This review examines the various techniques that have been used in HPAC to examine drug-protein binding and discusses the types of information that can be obtained through this approach. A comparison of these techniques with traditional methods for binding studies (e.g., equilibrium dialysis and ultrafiltration) will also be presented. The use of HPAC with specific serum proteins and binding agents will then be discussed, including HSA and alpha(1)-acid glycoprotein (AGP). Several examples from the literature are provided to illustrate the applications of such research. Recent developments in this field are also described, such as the use of improved immobilization techniques, new data analysis methods, techniques for working directly with complex biological samples, and work with immobilized lipoproteins. The relative advantages and limitations of the methods that are described will be considered and the possible use of these techniques in the high-throughput screening or characterization of drug-protein binding will be discussed.


Journal of Chromatography A | 2010

Analysis of drug-protein binding by ultrafast affinity chromatography using immobilized human serum albumin

Rangan Mallik; Michelle J. Yoo; Chad Briscoe; David S. Hage

Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug-binding studies and in the high-throughput screening of new drug candidates.


Current Drug Metabolism | 2011

CHARACTERIZATION OF DRUG INTERACTIONS WITH SERUM PROTEINS BY USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

David S. Hage; Jeanethe Anguizola; Omar S. Barnaby; Abby J. Jackson; Michelle J. Yoo; Efthimia Papastavros; Erika L. Pfaunmiller; Matt Sobansky; Zenghan Tong

The binding of drugs with serum proteins can affect the activity, distribution, rate of excretion, and toxicity of pharmaceutical agents in the body. One tool that can be used to quickly analyze and characterize these interactions is high-performance affinity chromatography (HPAC). This review shows how HPAC can be used to study drug-protein binding and describes the various applications of this approach when examining drug interactions with serum proteins. Methods for determining binding constants, characterizing binding sites, examining drug-drug interactions, and studying drug-protein dissociation rates will be discussed. Applications that illustrate the use of HPAC with serum binding agents such as human serum albumin, α(1)-acid glycoprotein, and lipoproteins will be presented. Recent developments will also be examined, such as new methods for immobilizing serum proteins in HPAC columns, the utilization of HPAC as a tool in personalized medicine, and HPAC methods for the high-throughput screening and characterization of drug-protein binding.


Journal of Chromatography A | 2011

Use of peak decay analysis and affinity microcolumns containing silica monoliths for rapid determination of drug-protein dissociation rates.

Michelle J. Yoo; David S. Hage

This report examined the use of silica monoliths in affinity microcolumns containing human serum albumin (HSA) to measure the dissociation rates for various drugs from this protein. Immobilized HSA and control monolith columns with dimensions of 1 mm × 4.6 mm i.d. were prepared for this work and used with a noncompetitive peak decay method. Several drugs known to bind HSA were examined, such as warfarin, diazepam, imipramine, acetohexamide, and tolbutamide. Items that were studied and optimized in this method included the sample volume, sample concentration, and elution flow rate. It was found that flow rates up to 10 mL/min could be used in this approach. Work with HSA silica monoliths at these high flow rates made it possible to provide dissociation rate constants for drugs such as warfarin in less than 40s. The dissociation rate constants that were measured gave good agreement with values reported in the literature or that had been obtained with other solutes that had similar binding affinities for HSA. This approach is a general one that should be useful in examining the dissociation of other drugs from HSA and in providing a high-throughput method for screening drug-protein interactions.


Journal of Chromatography B | 2008

Studies of imipramine binding to human serum albumin by high-performance affinity chromatography

Michelle J. Yoo; Quentin R. Smith; David S. Hage

Binding by the drug imipramine to the protein human serum albumin (HSA) was studied by using high-performance affinity chromatography. The association equilibrium constants and number of binding sites for imipramine with HSA were first estimated by utilizing frontal analysis. Imipramine was found to have one major binding site on HSA with an association equilibrium constant of 1.6 x 10(5) M(-1) at pH 7.4 and 37 degrees C, as well as a second group of weaker and non-specific binding regions (8-9 mol/mol HSA) with an average association equilibrium constant of 1.5 x 10(3) M(-1). Competition studies based on zonal elution were performed to identify the location of the major binding site for imipramine on HSA. Imipramine was found to have direct competition with L-tryptophan, which indicated that imipramine was interacting with Sudlow site II, or the indole-benzodiazepine site of HSA. No competition or allosteric effects were noted between imipramine and warfarin, a probe for Sudlow site I or the warfarin-azapropazone site of HSA. The association equilibrium constant found for imipramine at its site of competition with L-tryptophan also agreed with the value that was obtained for the major binding site of imipramine in the frontal analysis studies. These results confirmed that Sudlow site II was the location of the major binding site for imipramine on HSA. These results gave good agreement with previous observations made in the literature and should provide a more detailed description of how imipramine is transported in blood and of how it may interact with other drugs in the body.


Journal of Separation Science | 2009

Evaluation of silica monoliths in affinity microcolumns for high-throughput analysis of drug–protein interactions

Michelle J. Yoo; David S. Hage

Silica monoliths in affinity microcolumns were tested for the high-throughput analysis of drug-protein interactions. HSA was used as a model protein for this work, while carbamazepine and R-warfarin were used as model analytes. A comparison of HSA silica monoliths of various lengths indicated columns as short as 1 to 3 mm could be used to provide reproducible estimates of retention factors or plate heights. Benefits of using smaller columns for this work included the lower retention times and lower back pressures that could be obtained versus traditional HPLC affinity columns, as well as the smaller amount of protein that is required for column preparation. One disadvantage of decreasing column length was the lower precision that resulted in retention factor and plate height measurements. A comparison was also made between microcolumns containing silica particles versus silica monoliths. It was demonstrated with R-warfarin that supports could be used in HSA microcolumns for the determination of retention factors or plate heights. However, the higher efficiency of the silica monolith made this the preferred support for work at higher flow rates or when a larger number of plates are needed during the rapid analysis of drug-protein interactions.


Analytical Methods | 2011

Chromatographic analysis of drug interactions in the serum proteome

David S. Hage; Jeanethe Anguizola; Abby J. Jackson; Ryan Matsuda; Efthimia Papastavros; Erika L. Pfaunmiller; Zenghan Tong; John Vargas-Badilla; Michelle J. Yoo; Xiwei Zheng

The binding of drugs with serum proteins and binding agents such as human serum albumin, α1-acid glycoprotein, and lipoproteins is an important process in determining the activity and fate of many pharmaceuticals in the body. A variety of techniques have been used to study drug interactions with serum proteins, but there is still a need for faster or better methods for such work. High-performance liquid chromatography (HPLC) is one tool that has been utilized in many formats for these types of measurements. Advantages of using HPLC for this application include its speed and precision, its ability to be automated, its good limits of detection, and its compatibility with a wide range of assay formats and detectors. This review will discuss various approaches in which HPLC can be employed for the study of drug-protein interactions. These techniques include the use of soluble proteins in zonal elution and frontal analysis methods or vacancy techniques such as the Hummel-Dreyer method. Zonal elution and frontal analysis methods that make use of immobilized proteins and high-performance affinity chromatography will also be presented. A variety of applications will be examined, ranging from the determination of free drug fractions to the measurement of the strength or rate of a drug-protein interaction. Newer developments that will be discussed include recent work in the creation of novel mathematical approaches for HPLC studies of drug-protein binding, the use of HPLC methods for the high-throughput screening of drug-protein binding, and the creation and use of affinity monoliths or affinity microcolumns for examining drug-protein systems.


Journal of Chromatography B | 2010

EVALUATION OF AFFINITY MICROCOLUMNS CONTAINING HUMAN SERUM ALBUMIN FOR RAPID ANALYSIS OF DRUG-PROTEIN BINDING

Michelle J. Yoo; John E. Schiel; David S. Hage

This study examined the use of affinity microcolumns as tools for the rapid analysis and high-throughput screening of drug-protein binding. The protein used was immobilized human serum albumin (HSA) and the model analytes were warfarin and L-tryptophan, two solutes often used as site-specific probes for drug binding to Sudlow sites I and II of HSA, respectively. The use of HSA microcolumns in binding studies was examined by using both zonal elution and frontal analysis formats. The zonal elution studies were conducted by injecting the probe compounds onto HSA microcolumns of varying lengths while measuring the resulting retention factors, plate heights and peak asymmetries. A decrease in the retention factor was noted when moving from longer to shorter column lengths while using a constant amount of injected solute. However, this change could be corrected, in part, by determining the relative retention factor of a solute versus a reference compound injected onto the same microcolumn. The plate height values were relatively consistent for all column lengths and gave an expected increase at higher linear velocities. The peak asymmetries were similar for all columns up to 1 mL/min but shifted to larger values at higher flow rates and when using short microcolumns (e.g., 1 mm length). The association equilibrium constants and number of binding sites estimated by frontal analysis for warfarin with HSA were consistent at the various column sizes that were tested and gave good agreement with previous literature values. These results confirmed affinity microcolumns provide comparable results to those obtained with longer columns and can be used in the rapid analysis of drug-protein binding and in the high-throughput screening of such interactions.


Journal of Chromatography B | 2010

Analysis of lidocaine interactions with serum proteins using high-performance affinity chromatography

Sony Soman; Michelle J. Yoo; Yoon Jeong Jang; David S. Hage

High-performance affinity chromatography was used to study binding by the drug lidocaine to human serum albumin (HSA) and alpha(1)-acid glycoprotein (AGP). AGP had strong binding to lidocaine, with an association equilibrium constant (K(a)) of 1.1-1.7 x 10(5) M(-1) at 37 degrees C and pH 7.4. Lidocaine had weak to moderate binding to HSA, with a K(a) in the range of 10(3) to 10(4) M(-1). Competitive experiments with site selective probes showed that lidocaine was interacting with Sudlow site II of HSA and the propranolol site of AGP. These results agree with previous observations in the literature and provide a better quantitative understanding of how lidocaine binds to these serum proteins and is transported in the circulation. This study also demonstrates how HPAC can be used to examine the binding of a drug with multiple serum proteins and provide detailed information on the interaction sites and equilibrium constants that are involved in such processes.


Journal of Separation Science | 2011

High‐throughput analysis of drug dissociation from serum proteins using affinity silica monoliths

Michelle J. Yoo; David S. Hage

A noncompetitive peak decay method was used with 1 mm×4.6 mm id silica monoliths to measure the dissociation rate constants (kd) for various drugs with human serum albumin (HSA) and α1-acid glycoprotein (AGP). Flow rates up to 9 mL/min were used in these experiments, resulting in analysis times of only 20-30 s. Using a silica monolith containing immobilized HSA, dissociation rate constants were measured for amitriptyline, carboplatin, cisplatin, chloramphenicol, nortriptyline, quinidine, and verapamil, giving values that ranged from 0.37 to 0.78 s(-1). Similar work with an immobilized AGP silica monolith gave kd values for amitriptyline, nortriptyline, and lidocaine of 0.39-0.73 s(-1). These kd values showed good agreement with values determined for drugs with similar structures and/or affinities for HSA or AGP. It was found that a kd of up to roughly 0.80 s(-1) could be measured by this approach. This information made it possible to obtain a better understanding of the advantages and possible limitations of the noncompetitive peak decay method and in the use of affinity silica monoliths for the high-throughput analysis of drug-protein dissociation.

Collaboration


Dive into the Michelle J. Yoo's collaboration.

Top Co-Authors

Avatar

David S. Hage

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Abby J. Jackson

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Efthimia Papastavros

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Erika L. Pfaunmiller

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Jeanethe Anguizola

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

John E. Schiel

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Quentin R. Smith

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Rangan Mallik

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Xiwei Zheng

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Zenghan Tong

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge