Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle Kang is active.

Publication


Featured researches published by Michelle Kang.


Nature Genetics | 2010

Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia

Charlotte M. Niemeyer; Michelle Kang; Danielle H. Shin; Ingrid Furlan; Miriam Erlacher; Nancy Bunin; Severa Bunda; Jerry Z. Finklestein; Kathleen M. Sakamoto; Thomas A. Gorr; Parinda A. Mehta; Irene Schmid; Gabriele Kropshofer; Selim Corbacioglu; Peter Lang; Christoph Klein; Paul-Gerhard Schlegel; Andrea Heinzmann; Michaela Schneider; Jan Starý; Marry M. van den Heuvel-Eibrink; Henrik Hasle; Franco Locatelli; Debbie Sakai; Sophie Archambeault; Leslie Chen; Ryan C. Russell; Stephanie S Sybingco; Michael Ohh; Benjamin S. Braun

CBL encodes a member of the Cbl family of proteins, which functions as an E3 ubiquitin ligase. We describe a dominant developmental disorder resulting from germline missense CBL mutations, which is characterized by impaired growth, developmental delay, cryptorchidism and a predisposition to juvenile myelomonocytic leukemia (JMML). Some individuals experienced spontaneous regression of their JMML but developed vasculitis later in life. Importantly, JMML specimens from affected children show loss of the normal CBL allele through acquired isodisomy. Consistent with these genetic data, the common p.371Y>H altered Cbl protein induces cytokine-independent growth and constitutive phosphorylation of ERK, AKT and S6 only in hematopoietic cells in which normal Cbl expression is reduced by RNA interference. We conclude that germline CBL mutations have developmental, tumorigenic and functional consequences that resemble disorders that are caused by hyperactive Ras/Raf/MEK/ERK signaling and include neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome and Legius syndrome.


Blood | 2009

Mutations in CBL occur frequently in juvenile myelomonocytic leukemia

Mignon L. Loh; Debbie Sakai; Christian Flotho; Michelle Kang; Manfred Fliegauf; Sophie Archambeault; Charles G. Mullighan; Leslie Chen; Eva Bergstraesser; Carlos E. Bueso-Ramos; Peter D. Emanuel; Henrik Hasle; Jean-Pierre J. Issa; Marry M. van den Heuvel-Eibrink; Franco Locatelli; Jan Starý; Monica Trebo; Marcin W. Wlodarski; Marco Zecca; Kevin Shannon; Charlotte M. Niemeyer

Juvenile myelomonocytic leukemia is an aggressive myeloproliferative disorder characterized by malignant transformation in the hematopoietic stem cell compartment with proliferation of differentiated progeny. Seventy-five percent of patients harbor mutations in the NF1, NRAS, KRAS, or PTPN11 genes, which encode components of Ras signaling networks. Using single nucleotide polymorphism arrays, we identified a region of 11q isodisomy that contains the CBL gene in several JMML samples, and subsequently identified CBL mutations in 27 of 159 JMML samples. Thirteen of these mutations alter codon Y371. In this report, we also demonstrate that CBL and RAS/PTPN11 mutations were mutually exclusive in these patients. Moreover, the exclusivity of CBL mutations with respect to other Ras pathway-associated mutations indicates that CBL may have a role in deregulating this key pathway in JMML.


Blood | 2010

TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a

Christofer Diakos; Sheng Zhong; Yuanyuan Xiao; Mi Zhou; Gisele M. Vasconcelos; Gerd Krapf; Ru-Fang Yeh; Shichun Zheng; Michelle Kang; John K. Wiencke; Maria S. Pombo-de-Oliveira; Renate Panzer-Grümayer; Joseph L. Wiemels

There is increasing evidence that miRNA and transcription factors interact in an instructive fashion in normal and malignant hematopoiesis. We explored the impact of TEL-AML1 (ETV6-RUNX1), the most common fusion protein in childhood leukemia, on miRNA expression and the leukemic phenotype. Using RNA interference, miRNA expression arrays, and quantitative polymerase chain reaction, we identified miRNA-494 and miRNA-320a to be up-regulated upon TEL-AML1 silencing independently of TEL expression. Chromatin immunoprecipitation analysis identified miRNA-494 as a direct miRNA target of the fusion protein TEL-AML1. Using bioinformatic analysis as well as functional luciferase experiments, we demonstrate that survivin is a target of the 2 miRNAs. miRNA-494 and miRNA-320a were introduced to the cells by transfection and survivin expression determined by Western blot analysis. These miRNAs blocked survivin expression and resulted in apoptosis in a similar manner as TEL-AML1 silencing by itself; this silencing was also shown to be Dicer-dependent. miRNAs-494 and -320a are expressed at lower levels in TEL-AML1+ leukemias compared with immunophenotype-matched nonTEL-AML1 acute lymphoblastic leukemia subtypes, and within TEL-AML1+ leukemias their expression is correlated to survivin levels. In summary our data suggest that TEL-AML1 might exert its antiapoptotic action at least in part by suppressing miRNA-494 and miRNA-320a, lowering their expression causing enhanced survivin expression.


Blood Cells Molecules and Diseases | 2010

Backtracking RAS mutations in high hyperdiploid childhood acute lymphoblastic leukemia

Joseph L. Wiemels; Michelle Kang; Jeffrey S. Chang; Lily Zheng; Carina Kouyoumji; Luoping Zhang; Martyn T. Smith; Ghislaine Scelo; Catherine Metayer; Patricia A. Buffler; John K. Wiencke

High hyperdiploidy is the single largest subtype of childhood acute lymphoblastic leukemia (ALL) and is defined by the presence of 51-68 chromosomes in a karyotype. The 5 or more extra chromosomes characterizing this subtype are known to occur in a single mitotic event, prenatally. We screened for RAS mutations among 517 acute childhood leukemias (including 437 lymphocytic, of which 393 were B-cell subtypes) and found mutations in 30% of high hyperdiploids compared to only 10% of leukemias of other subtypes (P<0.0001). We assessed whether KRAS mutations occurred before birth using a PCR-restriction enzyme-mediated Taqman quantitative PCR reaction, and found no evidence for prenatal KRAS mutations in 14 patients tested. While RAS mutations were previously associated with prior chemical exposures in childhood and adult leukemias, in this study RAS-mutated cases were not significantly associated with parental smoking when compared to study controls. IGH rearrangements were backtracked in three RAS-positive patients (which were negative for KRAS mutation at birth) and found to be evident before birth, confirming a prenatal origin for the leukemia clone. We posit a natural history for hyperdiploid leukemia in which prenatal mitotic catastrophe is followed by a postnatal RAS mutation to produce the leukemic cell phenotype.


Cancer Research | 2013

Inhibition of SRC Corrects GM-CSF Hypersensitivity That Underlies Juvenile Myelomonocytic Leukemia

Severa Bunda; Michelle Kang; Stephanie S Sybingco; Julie Weng; Helene Favre; Danielle H. Shin; Meredith S. Irwin; Mignon L. Loh; Michael Ohh

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm in children characterized by the overproduction of monocytic cells that infiltrate the spleen, lung, and liver. JMML remains a disease for which few curative therapies are available other than myeloablative hematopoietic stem cell transplant (HSCT); however, relapse remains a major cause of treatment failure and the long-term morbidities of HSCT for survivors are substantial. A hallmark feature of JMML is acquired hypersensitivity by clonal myeloid progenitor cells to granulocyte macrophage-colony stimulating factor (GM-CSF) via a largely unknown mechanism. Here, we identify c-Cbl (henceforth referred to as Cbl) as a GM-CSF receptor (GMR) adaptor protein that targets Src for ubiquitin-mediated destruction upon GM-CSF stimulation and show that a loss of negative regulation of Src is pivotal in the hyperactivation of GMR signaling in Cbl-mutated JMML cells. Notably, dasatinib, an U.S. Food and Drug Administration-approved multikinase inhibitor that also targets Src family, dramatically attenuated the spontaneous and GM-CSF-induced hypersensitive growth phenotype of mononuclear cells from peripheral blood and bone marrow collected from JMML patients harboring Cbl or other known JMML-associated mutations. These findings reveal Src kinase as a critical oncogenic driver underlying JMML.


Cancer Research | 2008

Chromosome 12p Deletions in TEL-AML1 Childhood Acute Lymphoblastic Leukemia Are Associated with Retrotransposon Elements and Occur Postnatally

Joseph L. Wiemels; Jerry Hofmann; Michelle Kang; Rebecca R. Selzer; Roland D. Green; Mi Zhou; Sheng Zhong; Luoping Zhang; Martyn T. Smith; Carmen J. Marsit; Mignon L. Loh; Patricia A. Buffler; Ru-Fang Yeh

TEL-AML1 (ETV6-RUNX1) is the most common translocation in the childhood leukemias, and is a prenatal mutation in most children. This translocation has been detected at a high rate among newborns ( approximately 1%); therefore, the rate-limiting event for leukemia seems to be secondary mutations. One such frequent mutation in this subtype is partial deletion of chromosome 12p, trans from the translocation. Nine del(12p) breakpoints within six leukemia cases were sequenced to explore the etiology of this genetic event, and most involved cryptic sterile translocations. Twelve of 18 del(12p) parent sequences involved in these breakpoints were located in repeat regions (8 of these in long interspersed nuclear elements). This stands in contrast with TEL-AML1, in which only 21 of 110 previously assessed breakpoints (19%) occur in DNA repeats (P=0.0001). An exploratory assessment of archived neonatal blood cards revealed significantly more long interspersed nuclear element CpG methylations in individuals at birth who were later diagnosed with TEL-AML1 leukemia, compared with individuals who did not contract leukemia (P=0.01). Nontemplate nucleotides were also more frequent in del(12p) than in TEL-AML1 junctions (P=0.004), suggesting formation by terminal deoxynucleotidyl transferase. Assessment of six archived neonatal blood cards indicated that no del(12p) rearrangements backtracked to birth, although two of these patients were previously positive for TEL-AML1 using the same assay with comparable sensitivity. These data are compatible with a two-stage natural history: TEL-AML1 occurs prenatally, and del(12p) occurs postnatally in more mature cells with a structure that suggests the involvement of retrotransposon instability.


Blood | 2014

PI3K p110δ uniquely promotes gain-of-function Shp2-induced GM-CSF hypersensitivity in a model of JMML

Charles B. Goodwin; Xing Jun Li; Raghuveer Singh Mali; Gordon Chan; Michelle Kang; Ziyue Liu; Bart Vanhaesebroeck; Benjamin G. Neel; Mignon L. Loh; Brian Lannutti; Reuben Kapur; Rebecca J. Chan

Although hyperactivation of the Ras-Erk signaling pathway is known to underlie the pathogenesis of juvenile myelomonocytic leukemia (JMML), a fatal childhood disease, the PI3K-Akt signaling pathway is also dysregulated in this disease. Using genetic models, we demonstrate that inactivation of phosphatidylinositol-3-kinase (PI3K) catalytic subunit p110δ, but not PI3K p110α, corrects gain-of-function (GOF) Shp2-induced granulocyte macrophage-colony-stimulating factor (GM-CSF) hypersensitivity, Akt and Erk hyperactivation, and skewed hematopoietic progenitor distribution. Likewise, potent p110δ-specific inhibitors curtail the proliferation of GOF Shp2-expressing hematopoietic cells and cooperate with mitogen-activated or extracellular signal-regulated protein kinase kinase (MEK) inhibition to reduce proliferation further and maximally block Erk and Akt activation. Furthermore, the PI3K p110δ-specific inhibitor, idelalisib, also demonstrates activity against primary leukemia cells from individuals with JMML. These findings suggest that selective inhibition of the PI3K catalytic subunit p110δ could provide an innovative approach for treatment of JMML, with the potential for limiting toxicity resulting from the hematopoietic-restricted expression of p110δ.


British Journal of Cancer | 2008

Adenovirus detection in Guthrie cards from paediatric leukaemia cases and controls

G M Vasconcelos; Michelle Kang; M S Pombo-de-Oliveira; J D Schiffman; F Lorey; Patricia A. Buffler; Joseph L. Wiemels

Archived neonatal blood cards (Guthrie cards) from children who later contracted leukaemia and matched normal controls were assayed for adenovirus (AdV) C DNA content using two highly sensitive methods. In contrast to a previous report, AdV DNA was not detected at a higher frequency among neonates who later developed leukaemia, when compared with controls.


Archives of Medical Research | 2016

Tobacco Smoke and Ras Mutations Among Latino and Non-Latino Children with Acute Lymphoblastic Leukemia

Maneet Kaur; Adam J. de Smith; Steve Selvin; Luoping Zhang; Marc J. Cunningham; Michelle Kang; Helen M. Hansen; Robert M. Cooper; Roberta McKean-Cowdin; Joseph L. Wiemels; Catherine Metayer

BACKGROUND AND AIMS Childhood acute lymphoblastic leukemia (ALL) is a biologically heterogeneous disease, and mutations in the KRAS and NRAS oncogenes are present at diagnosis in about one-fifth of cases. Ras mutations were previously associated with environmental exposures in leukemias as well as in many other cancer types. This study examined whether Ras mutation could define a unique etiologic group of childhood ALL associated with tobacco smoke, a well-established mutagen and carcinogen. METHODS We included 670 children with ALL enrolled in a case-control study in California (1995-2013), including 50.6% Latinos. Parental and child exposure to tobacco smoke was obtained from interviews. Sanger sequencing was used to detect the common KRAS and NRAS hotspot mutations in diagnostic bone marrow DNA. ALL cases were also characterized for common chromosome abnormalities. In case-case analyses, logistic regression analyses were used to estimate odds ratios to describe the association between tobacco smoke exposure and childhood ALL with Ras mutations. RESULTS KRAS or NRAS mutations were detected in ∼18% of children diagnosed with ALL. Ras mutations were more common among Latino cases compared with non-Latino whites and in high-hyperdiploid ALL. No associations were observed between parental smoking or childs passive exposure to smoke and Ras positive ALL. CONCLUSIONS The apparent lack of association between tobacco smoke and Ras mutation in childhood ALL suggests that Ras mutations do not specifically define a tobacco-related etiologic pathway. Reasons for racial and ethnic differences in ALL are not well understood and could reflect differences in etiology that warrant further examination.


BMC Cancer | 2010

FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia

Patrick C. Chang; Michelle Kang; Anny Xiao; Jeffrey S. Chang; James H. Feusner; Patricia A. Buffler; Joseph L. Wiemels

Collaboration


Dive into the Michelle Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mi Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mignon L. Loh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ru-Fang Yeh

University of California

View shared research outputs
Top Co-Authors

Avatar

Sheng Zhong

University of California

View shared research outputs
Top Co-Authors

Avatar

Shichun Zheng

University of California

View shared research outputs
Top Co-Authors

Avatar

Yuanyuan Xiao

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge